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Abstract 

The neurological influence of ischemic stroke in the initiation and perpetuation of stroke-

induced heart injury (SIHI) has been acknowledged for several years. However, an underlying 

pathophysiological mechanism remains uncertain. Clinically, it is hypothesized that stroke 

involving the insular cortex (IC) initiates SIHI; since the IC controls autonomic regulation of 

cardiovascular function. Yet, given the high prevalence of shared risk factors between ischemic 

stroke and cardiovascular disorders, mechanistic conclusions from clinical studies are largely 

speculative. We therefore sought to establish a novel rodent model of focal insular ischemic 

stroke, used to evaluate potential behavioural and pathological outcomes of SIHI. Focal 

ischemic stroke was induced into the right or left IC of 6-month-old male Wistar rats, through 

stereotaxic injection of endothelin-1 (ET-1). Control groups received an injection of ibotenic 

acid (IA), phosphate-buffered saline (PBS) or no injection (NI). Before euthanasia, rats were 

assessed for autonomic deficits in sensorimotor gating. At 28 days post-injection, rats with left 

IC damage displayed an overall trend of deficiencies in sensorimotor gating; compared to rats 

with right IC damage and PBS/NI control groups. Pathologically, all injured groups (IA/ET-1) 

exhibited a chronic increase in microglia activation, present at the IC and remote white/grey 

matter regions. Furthermore, these groups expressed cardiac fibrosis within the left atrium. 

When correlated, a positive association between microglia activation and cardiac fibrosis was 

observed. With this novel model, we have successfully identified several downstream 

consequences of IC stroke within the brain and heart, affirming the focal contribution of IC 

damage to SIHI. Taken together, these preliminary results provide important insight into 

potential mechanisms of post-stroke cardiac damage, serving as future therapeutic targets for 

SIHI.        

Keywords: ischemic stroke, stroke-induced heart injury, insular cortex, autonomic 

dysfunction, neuroinflammation 
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1.1 The Brain-Heart Connection 

 Acknowledgement and identification of the brain-heart connection was first reported 

in 1942 by Walter B. Cannon, in his paper entitled “Voodoo Death.” Here, Cannon recounted 

early incidents of sudden death from fright, hypothesizing the innate capability of the nervous 

system to injure the heart 1. Since then, numerous neurological disorders have been associated 

with adverse cardiovascular events 2. Among these, stroke stands out; contributing to a high-

frequency of neurocardiac arrhythmias and lesions 3–6. While it has been speculated that insular 

cortex damage, and arising autonomic dysfunction, contribute to this observed brain-heart 

phenomenon 7, little is known about the underlying pathophysiology; making this intricate 

relationship between the brain and heart a clinically relevant topic of interest. 

1.2 Stroke 

1.2.1 Stroke epidemiology and societal implications 

Stroke is a global burden, negatively impacting the health and wellbeing of individuals 

worldwide 8. In industrialized countries like Canada, stroke is the most common cause of 

morbidity and a prominent source of mortality; only second to heart disease 9. As such, 

numerous research efforts have been dedicated to the investigation of stroke occurrence and 

prevention; resulting in the identification of key risk factors. In particular, high blood pressure, 

diabetes, smoking, heart disease and age have all been recognized as major contributors of 

stroke 10–15. While increased knowledge and public awareness of these risk factors have 

produced a recent North American decline in stroke occurrence 16, age remains a dominant and 

uncontrollable risk factor. With the current ageing population, stroke incidence among the 

elderly is expected to rise, significantly increasing stroke-related socioeconomic and healthcare 

demands 9,17. 

1.2.2 Stroke subtypes 

Traditionally, stroke has been generalized into two basic categories: hemorrhagic and 

ischemic. Hemorrhagic strokes are the less frequent subtype, accounting for approximately 10-

15% of all strokes 18. Manifestation of these strokes occur following the rupture of a cranial 

blood vessel, an associated outcome of chronic hypertension 19–21. Consequently, this bleeding 

within the brain increases intracranial pressure, further causing reduced blood flow to 

surrounding tissue; ultimately expanding the region of hemorrhagic brain damage 22. 
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Ischemic strokes are typically less severe than hemorrhagic strokes, but much more 

common – accounting for approximately 85-90% of all strokes 18. Due to this greater incidence 

of ischemic strokes, our research will specifically study ischemic-induced cardiovascular 

changes, despite a similar prevalence in both subgroups 6. 

Mechanistically, ischemic strokes occur following the occlusion of a cranial blood 

vessel, which inhibits local blood flow 23. Numerous factors can contribute to this physical 

blockade, including narrowing of the vessel wall (as observed in atherosclerosis) or the 

presence of a blood clot 23. In some circumstances, a temporary blockage of short duration can 

occur, generating a transient ischemic attack (TIA) 24. While the accompanying symptoms and 

damage associated with TIAs are minimal, the occurrence of these “mini-strokes” are known 

to increase the risk of a future ischemic episode 24–26. 

1.2.3 Ischemic stroke interventions 

Presently, intravenous administration of recombinant tissue plasminogen activator 

(rtPA) serves as the only viable treatment for acute ischemic stroke 27,28. This protein acts to 

dissolve the intraluminal clotted material, restoring blood flow to the ischemic region 28. 

However, the therapeutic window for this drug is limited, requiring administration within 4.5 

hours of occlusion onset 28,29. According to epidemiological reports, less than 10% of the 

eligible stroke population receives rtPA 30–32; indicating a strong need for alternative stroke 

therapies. 

1.2.4 Pathophysiology of ischemic stroke 

 The pathophysiological response that occurs following ischemic stroke is a complex 

process. Upon vessel occlusion, nutrient transport is obstructed; depleting local brain tissue of 

key metabolites, such as glucose 33–37. Consequently, cells are incapable of producing adenine 

triphosphate (ATP), an energy storage molecule crucial for tissue cell survival 38. In this 

absence of ATP, an ischemic cascade is activated, initiating the response of several cellular 

mechanisms 33–37. 

An initial loss of blood perfusion, and subsequent energy reduction, impairs cellular 

ionic homeostasis 33–37. In a normal functioning neuron, the influx of potassium (K+) ions and 

efflux of sodium (Na+) and/or calcium (Ca2+) ions across the cell membrane is tightly regulated, 

due to a neuron’s vital role in impulse transmission 39. However, in the absence of ATP, this 
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regulation is inhibited; allowing for the uncontrolled build-up of intracellular Na+ and Ca2+ 33–

37. Compensation for this increase in cellular Na+ stimulates the movement of water (H2O) into 

the cell, causing cytotoxic edema 40,41. This further restricts cerebral blood flow in surrounding 

areas, enlarging the infarct region 40.  

 In response to the overaccumulation of cellular Ca2+, excess glutamate 

neurotransmitters are released at the neuronal synapse and bind to nearby glutamate receptors: 

N-methyl-D-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-proprionate (AMPA) 42,43. 

This further disrupts the ionic balance of neighbouring cells, initiating an excitotoxic cascade 
44. Additionally, this increased presence of cellular Ca2+ activates degradative enzymes and 

reactive oxygen species (ROS) production; damaging key cellular components, like 

mitochondria 33–37. Consequently, injured mitochondria release apoptotic factors 45, further 

contributing to ischemic cell death. 

Irreversible cell death is the end-product of ischemic stroke, beginning to occur within 

minutes of occlusion 33–37. At the site of blockage, blood levels are reduced to approximately 

10% of basal levels, causing severe brain tissue necrosis 46. Over time, this region becomes 

void of glial cells and neurons, resulting in an undesirable loss of brain function 33–37.  

Adjacent to this core region exists a viable brain area comprised of vulnerable, but 

potentially salvageable tissue; referred to as the ischemic penumbra 33. Collateralization of 

vessel circuitry provides alternative sources of blood supply to this ischemic region, recovering 

blood flow to approximately 20-60% of basal levels 46. Due to the redeeming potential of this 

region, the penumbra serves as an optimal target for future stroke interventions. 

1.2.5 Rodent models of ischemic stroke 

Currently, numerous animal models and techniques are available for the experimental 

study of stroke 47–53. However, selection of the appropriate model should be reflective of the 

clinical research question, as origin, location and size can all change outcomes of human 

ischemic stroke 53,54. Rodents particularly function as an advantageous stroke model, due to 

extensive knowledge of their neuroanatomy 55 and similarities with human cranial circulation 
52.   

Traditionally, middle cerebral artery occlusion (MCAO) has served as a popular 

technique for the induction of ischemic injury. In this method, an endovascular monofilament 

is inserted into the cerebral vasculature of the rat, blocking the middle cerebral artery (MCA) 
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bifurcation 56. This ultimately impairs cerebral blood flow, generating rapid ischemia within 

the cortex and subcortical brain regions 56.  

While implementation of MCAO produces a consistent infarct region, resulting damage 

is widespread and severe 56. Alternatively, intracranial injection of the vasoconstrictor 

endothelin-1 (ET-1) has been used to produce a more targeted area of focal ischemia 57–59. 

Following administration, ET-1 binds to endothelin receptors present on the endothelial cells 

of blood vessels, inducing vasoconstriction 58. Based upon previous MRI perfusion studies, 

resulting ischemia lasts for approximately 1 h before reperfusion 57. Unlike MCAO, use of ET-

1 provides versatility of infarct size and location 54,57. However, it is important to note that 

application of this method causes invasive damage unrelated to ischemic stroke. Intracranial 

insertion of the cannula disrupts the skull, blood-brain barrier (BBB) and secondary brain 

regions 47,53,54; which must be taken into account when analyzing results. In the present study, 

neurocardiac influences associated with insular injury will be examined, requiring the 

production of focal damage. For this reason, the ET-1 ischemic stroke model will be used for 

experiments outlined in this thesis.  

1.3 Ischemic Stroke and Neuroinflammation 

Inflammation is a vital mechanism of ischemic injury, largely modulated by microglia 

and astrocytes – immune cells of the central nervous system (CNS) 35–37,53. During ischemia, 

these cells work to retain neuron health and homeostasis, through active participation in tissue 

repair and regeneration. However, not all forms of cerebral inflammation appear to produce 

beneficial effects. Recent literature has identified a co-existing and contradictory influence of 

neuroinflammation, capable of enhancing peri-infarct damage 60.    

 In response to toxic stimuli released by injured neurons during the ischemic cascade, 

resting astrocytes become activated; referred to as astrogliosis 61. During acute recovery, 

astrocytes function to encapsulate the infarcted region within a glial scar (comprised of 

astrocytes and microglia) in an effort to contain and repair the damaged area 61,62. Recent 

reports suggest that astrocytes may also amplify the ischemic inflammatory response through 

the release of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNFα) and 

interleukin-1 beta (IL-1β) 63, but exact mechanisms remain unclear.      

 Similar to astrocytes, microglia become activated in response to noxious stimuli; 

termed microgliosis 35–37,53. Upon activation, microglia undergo morphological changes, 
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transitioning from a ramified to amoeboid appearance 64. Interestingly, activated microglia can 

exhibit phenotypic and functional variance depending on the nature, strength and duration of 

presenting stimuli 60,64. Currently, two activated microglia subtypes have been identified: M1 

and M2 60. M2 microglia are characteristically involved with anti-inflammatory efforts; 

phagocytosing toxic debris, releasing anti-inflammatory cytokines, such as transforming 

growth factor beta-1 (TGFβ), and promoting neurogenesis 60,65. Often deemed “helpful” 

microglia, this M2 subtype works to minimize ischemic damage 60. Contrarily, M1 microglia, 

frequently referred to as the “harmful” subtype, display an enhanced pro-inflammatory 

response 60. Activation of these microglia results in the release of numerous pro-inflammatory 

compounds, including TNFα, IL-1β, matrix metalloproteinases (MMPs), ROS and nitric oxide 

(NO) 60,65. The particular presence of MMPs results in disruption of the BBB, allowing for the 

infiltration of peripheral leukocytes 64. This ultimately exacerbates local damage, while 

inducing systemic inflammation; contributing to further stimulation of the immune response. 

Occurrence of this systemic response is evident in a stroke patient’s blood sample, displaying 

increased levels of white blood cells and the inflammatory marker, C-reactive protein (CRP) 
37,66. 

In a recent study by Hu and colleagues, expression profiles of M1/M2 polarization post-

ischemic stroke were outlined. Intriguingly, ischemic microglia activation displayed a 

differential shift in subtype expression 67. Soon after ischemic injury, an increased presence of 

M2 microglia was observed 67. However, this M2 appearance remained transient, gradually 

transitioning to M1 phenotypic-dominance at 7 days post-stroke; suggesting a causative role 

of chronic inflammation in ischemic injury expansion 67. 

1.4 Secondary Consequences of Ischemic Stroke 

1.4.1 Ischemic stroke and white matter injury 

 Damaging effects of ischemia on local grey matter remains a primary focus of stroke 

research. Yet, recent clinical imaging studies have reported persistent white matter 

inflammation (WMI) in major fibre tracts following ischemic stroke; with continued presence 

several months into the recovery period 68–71. Alarmingly, this clinical manifestation of white 

matter pathology has been functionally implicated in post-stroke prognosis; associated with 

worse outcomes of prolonged recovery 68,72,73. As such, secondary presentation of ischemic 

WMI should not be ignored.    
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In the healthy brain, white matter fibre tracts serve as an internal communication 

network, transferring information between remote grey matter regions 66. Macroscopically, 

white matter consists of bundled axons, oligodendrocytes and astrocytes 66. Axons serve as the 

central mechanism for action potential conduction, while also playing an important role in 

nutrient/mediator transport between cell soma and synapse 66. Oligodendrocytes are myelin-

producing cells responsible for axonal myelination 66,74; enhancing the accuracy and speed of 

signal conduction 74. Astrocytes act to support oligodendrocyte and axonal health, influencing 

myelination and maintaining homeostatic equilibrium 74. Together, this white matter unit 

functions to orchestrate rapid neuron-neuron communication 66,74. Damage to any component 

will perturb impulse signalling, causing detrimental sensory, motor and/or cognitive disruption 
66,75. 

Similar to grey matter, white matter is critically dependent on a continuous supply of 

oxygen and nutrients 66. However, unlike grey matter, white matter has a small blood supply 

with limited collateral circulation; making it extremely susceptible to the toxic effects caused 

by post-stroke ischemia 66. Additionally, white matter becomes increasingly susceptible to 

ischemia with age 76,77, further stressing the powerful contribution of white matter injury to 

overall ischemic damage. The pathophysiological cascade of white matter injury following 

ischemic stroke is similar to that observed in grey matter. Depletion of local nutrients inhibits 

oligodendrocyte and astrocyte cellular energy production, causing ionic dyshomeostasis 76. 

This increases extracellular glutamate and ATP, leading to excitotoxicity, oxidative stress and 

initiation of the inflammatory response 76. Necrotic death of local oligodendrocytes ultimately 

induces axonal demyelination and damage, impairing signal transduction 34. It is important to 

note that the efficient conduction of an action potential through white matter circuitry requires 

the persistent supply of energy along the entire length of the axon 66. Consequently, local 

reduction of blood flow at the occluded site can destroy the electrophysiological properties of 

an entire axon, initiating delayed anterograde and/or retrograde secondary axonal degeneration 
66,71. 

1.4.2 Ischemic stroke and neurodegeneration 

Acute grey matter damage at the occlusion site, and within peri-infarct regions, is a 

known consequence of ischemic stroke and an intense focus of pre-clinical neuroprotective 

therapies 78,79. However, recent clinical research has described a delayed occurrence of 
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secondary damage in remote brain regions 80–85 at chronic post-stroke timepoints 68,85; 

suggesting the existence of an ongoing or prolonged ischemic pathology. Neurologically, the 

unfavourable manifestation of this remote injury has corresponded with adverse functional 

deficits in ischemic stroke patients 68,72,73, commonly referred to as “diaschisis” 86.  

Experimentally, several animal studies have observed a similar appearance of remote 

neuronal loss post-ischemic stroke 87–91. In particular, chronic pathology after MCAO in the 

rat has consistently displayed secondary thalamic damage 87–90. More recently, Weishaupt and 

colleagues reported ischemic neurodegeneration and neuronal loss within the retrosplenial 

cortex of the rat, at 28 days following bilateral injection of ET-1 into the prefrontal cortex 91; 

further supporting the aforementioned clinical findings.   

Exact mechanisms of this delayed secondary pathology remain largely unknown and 

may vary depending on the affected structures 91. Yet, an intriguing commonality exists 

between all observations of remote neuronal damage: location of the secondary degeneration 

is dependent on anatomical connectivity to the primary infarct 87–91, suggesting a causative role 

of the previously described white matter injury and axonal degeneration 92. Presently, it is 

hypothesized that following ischemic stroke, axonal degeneration of local inhibitory 

GABAergic neurons prompts a loss of disinhibition to distant brain regions 90,92. Inevitably, 

this fosters an excitotoxic response, evoking neuronal cell death in these secondary areas 90,92. 

A corresponding activation of local inflammatory mechanisms, in particular M1 microglia, 

further enhances necrotic damage, contributing to ongoing chronic neurodegeneration 90,92.  

 While the exacerbated presence of secondary inflammation and neurodegeneration is 

not ideal, the delayed nature of its pathology may widen the therapeutic window for stroke 

intervention 91. As such, future use of anti-inflammatory agents post-ischemic stroke could 

serve to minimize associated functional deficits of secondary damage, ultimately improving 

recovery time.  

1.4.3 Ischemic stroke and heart injury 

Adverse consequences of stroke are not limited to the brain. In fact, extensive clinical 

and experimental research has demonstrated that damage incurred by stroke can extend to the 

heart, causing structural and functional impairments 93–102; referred to as stroke-induced heart 

injury (SIHI). Initial reports of SIHI date back to the early 1950s, when Burch and colleagues 

first identified electrocardiogram (ECG) abnormalities in hemorrhagic stroke patients 101. Soon 
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after, Koskelo and colleagues reported post-mortem presentation of subendocardial 

hemorrhages in patients previously displaying stroke-induced ECG changes 100. Further 

supporting these clinical results, Burch and colleagues were first to confirm the histological 

presence of stroke-induced myocardial lesions in a mouse model of hemorrhagic stroke 98. 

Since then, several animal models of hemorrhagic stroke have reproduced similar arrhythmias 

and/or myocardial lesions 95,96,97,99.  

While early research efforts largely concentrated on hemorrhagic SIHI, similar cardiac 

outcomes have been observed in ischemic stroke patients 102–104. As mentioned previously, 

ischemic stroke accounts for roughly 85-90% of all strokes 18, making this specific 

neurocardiac relationship a great concern. Of particular attention, is the observed contribution 

of ischemic stroke to the development of atrial fibrillation (AF) 102. AF is a form of cardiac 

arrythmia known to increase the risk of stroke 5-fold 15. Currently, approximately 25% of 

ischemic stroke patients display post-stroke cardiac episodes of AF 102; and yet, pathological 

underpinnings remain unknown 105. Furthermore, 20-60% of ischemic stroke patients exhibit 

elevated serum cardiac troponin T (cTnT) levels post-stroke, a known biomarker of myocardial 

injury 104. In a recent report by Wrigley and colleagues, this increased presence of cTnT 

appeared to enhance the long-term risk for death after ischemic stroke 104; implying a capable 

manifestation of acute SIHI into chronic, deadly outcomes. 

1.5 Mechanisms of Stroke-Induced Heart Injury 

1.5.1 The autonomic nervous system 

To date, precise mechanisms of SIHI remain unclear, however, longstanding evidence 

suggests a significant role of autonomic dysfunction 93,97. The autonomic nervous system 

(ANS) is a critical component of the peripheral nervous system (PNS), responsible for the 

maintenance of internal homeostasis 106,107. Traditionally, the ANS has been separated into two 

antagonistic divisions: the sympathetic nervous system (SNS) and the parasympathetic nervous 

system (PSNS) 106,107. Together, these two autonomic branches act to unconsciously regulate 

visceral organ function, including cardiac activity 106,107. A dysfunction in one system often 

leads to adverse changes in the other, resulting in undesirable physiological consequences 2. 
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1.5.2 Neural control of cardiovascular function 

Predominant modulation of autonomic cardiovascular function occurs through an 

expansive network of cortical and subcortical brain regions 2,108–111. Together, these areas alter 

sympathetic and parasympathetic outflow, initiating a change in cardiac activity 2. 

Physiologically, the successful mediation of this neural control requires efficient afferent and 

efferent communication between the brain and heart 108.  

Afferent cardiac signal transduction depends on the internal surveillance of 

cardiovascular mechanical and chemical receptors 106,107,112. Upon activation, these sensory 

receptors will excite intrinsic cardiac neurons, initiating signal propagation 106,107,112. Within 

this autonomic circuitry, the brainstem acts as a vital communication link, relaying sensory 

information from the periphery to upper forebrain regions 2,108. As such, the nucleus of the 

solitary tract (NTS), located within the medulla, serves as the first neural synaptic site of 

afferent cardiac signals (Figure 1A) 2,108–110. From here, the signal is relayed to the parabrachial 

nucleus (PbN) of the pons, prior to reaching the forebrain. Afferent projections from the PbN 

directly synapse at the hypothalamus, amygdala, anterior cingulate cortex (ACC) and 

prefrontal cortex (PFC) 108,109; while the ventroposterior thalamus (VPT) serves as an 

additional relay centre between the PbN and insular cortex (Figure 1A) 108. These cortical and 

subcortical regions act as critical integration sites for autonomic cardiovascular function, 

modulating cardiac activity in response to internal conditions 2,106,107,112. 

Efferent alteration of heart function is directly mediated through sympathetic and 

parasympathetic changes 2. Upon receipt of afferent cardiac information, the aforementioned 

forebrain regions will alter efferent autonomic activity 108–110; evoking an increase or decrease 

in cardiovascular function (Figure 1B) 106,107,112. Increased cardiac activity requires enhanced 

sympathetic output from cardiac nerves, initiated through the excitation of presympathetic 

efferent neurons in the rostral ventrolateral medulla (RVLM) 2. Axons of the RVLM synapse 

with preganglionic cholinergic sympathetic neurons in the spinal cord, which in turn, synapse 

with postganglionic noradrenergic sympathetic neurons of cardiac stellate ganglia (Figure 1B) 
2. Excitation of these noradrenergic sympathetic neurons promotes the release of 

norepinephrine (NE), a neurotransmitter capable of interacting with cardiac adrenergic 

receptors; ultimately increasing heart function 106,107,112.  
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Figure 1. Neural control of cardiovascular function. (A) Afferent pathway of autonomic 
cardiovascular regulation. Brainstem cardiovascular sites (NTS/PbN) act as a vital relay centre 
for the transmission of peripheral cardiac sensory information to regulatory forebrain regions 
(PFC/ACC/HTH/AMYG/IC). The VPT serves as an additional autonomic relay centre 
between the PbN and IC (region not shown). (B) Efferent pathway of autonomic cardiovascular 
regulation. Autonomic modulation by PFC/ACC/HTH/AMYG/IC forebrain regions alters 
sympathetic (RVLM) or parasympathetic (DMV/NA) output, generating an overall increase 
(sympathetic) or decrease (parasympathetic) in heart rhythm. ACC = anterior cingulate cortex, 
PFC = prefrontal cortex, VPT = ventroposterior thalamus, IC = insular cortex, HTH = 
hypothalamus, AMYG = amygdala, PbN = parabrachial nucleus, DMV = dorsal motor nucleus 
of the vagus, NA = nucleus ambiguus, NTS = nucleus of the solitary tract, RVLM = rostral 
ventrolateral medulla. Adapted from Tahsili-Fahadan and Geocadin (2017) 2.  
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Not surprisingly, decreased cardiac activity requires enhanced parasympathetic output, 

initiated through the vagus nerve 2. Upon excitation, preganglionic cholinergic 

parasympathetic neurons at the dorsal motor nucleus of the vagus (DMV) and/or nucleus 

ambiguus (NA), both located within the medulla, will synapse with postganglionic cholinergic 

parasympathetic neurons of efferent cardiac ganglia 2; releasing acetylcholine (ACh) (Figure 

1B) 106,107,112. In turn, this parasympathetic neurotransmitter binds to cardiac muscarinic 

receptors, decreasing heart rate 106,107,112. 

1.5.3 Increased sympathetic activity and stroke-induced heart injury 

Early reports of SIHI have identified an accompanying increase in post-stroke 

sympathetic activity 93–97. Yet, it remains unclear whether this enhanced sympathetic tone is a 

direct effect of sympathetic upregulation, or indirect result of parasympathetic downregulation 
104. Regardless, this sympathetic hyperactivation increases NE release 106,107,112, insinuating a 

potential role of NE toxicity in the development of SIHI 2,93.  

Mechanistically, NE stimulates the synthesis of adenylyl cyclase (AC), an important 

regulator of myocardial Ca2+ channels 113. In the presence of AC, Ca2+ channels will open, 

initiating an influx of Ca2+ into local myocardiocytes 113. These elevated levels of Ca2+ enable 

actin and myosin filaments to interact; an action necessary for cardiac muscle contraction 93,113. 

Pathologically, prolonged exposure to NE will sustain channel opening and Ca2+ availability, 

permitting an unnatural period of continuous contraction 93,113. Consequently, myocardiocytes 

will die, leading to irreversible structural cardiac damage and a corresponding alteration in 

cardiac rhythm 2,93. Furthermore, the increased presence of cellular Ca2+ activates degradative 

enzymes capable of injuring the subendocardial conductive network 2. This ultimately impedes 

proper signal transduction, further disrupting normal heart rate and function 2,93. 

1.5.4 Inflammation and stroke-induced heart injury 

Recently, Olshansky hypothesized a regulatory role of the ANS in myocardial cytokine 

production; similar to that observed in the spleen, liver and intestines 114. Referred to as the 

“inflammatory reflex” or “cholinergic anti-inflammatory pathway,” this neural regulation of 

visceral inflammation is controlled by the vagus nerve 115. In short, the presence of peripheral 

cytokines (TNFα, IL-1β) during an immune response will activate parasympathetic nerve 

fibers, stimulating postganglionic release of ACh from visceral organs 106,107,112,114. This ACh 
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can then enter immune cells through the α7nAChR nicotinic receptor, directly inhibiting 

further transcription of proinflammatory cytokines; attenuating the inflammatory response 
116,117. As mentioned previously, sympathetic hyperactivation is a known outcome of stroke 93–

97. Consequently, an associated decrease in parasympathetic tone could abolish beneficial 

effects of the “inflammatory reflex,” perpetuating SIHI through enhanced cardiac and/or 

systemic inflammation 105. 

1.6 The Insular Cortex and Stroke-Induced Heart Injury 

1.6.1 Insular cortex structure and function 

The insular cortex (IC) is a highly-conserved, multimodal brain region, responsible for 

a variety of cognitive functions 118–121. In humans, the IC lies deep within the lateral sulcus, 

beneath the frontal, parietal and temporal lobes 118. Traditionally, the IC has anatomically been 

divided into an anterior and posterior region; with each extremity substantially differing in 

connectivity to other brain structures 122. As such, the IC remains heavily connected to an 

expansive network of cortical and subcortical regions, serving as a vital sensorimotor 

integration hub 118–120,122. To date, the IC has been implicated in an assortment of higher-order 

functional tasks: ranging from sensory processing to representing feelings and emotions, 

autonomic and motor control, risk prediction and decision-making, as well as complex social 

functions – like empathy 118–123.  

Recently, the pathophysiological relationship between IC damage and SIHI has gained 

increased interest. As mentioned previously, the IC exerts autonomic control over 

cardiovascular function, serving as an important forebrain site for the integration and alteration 

of cardiac activity 2,108,109. It is therefore hypothesized that SIHI is a specific consequence of 

insular ischemic stroke, with damage to the IC disrupting autonomic function; resulting in the 

dysregulation of normal cardiac activity 123. 

1.6.2 Clinical evidence of insular ischemic stroke-induced heart injury 

Supporting this hypothesis, various clinical and epidemiological studies have discerned 

an association between IC damage and SIHI 7,124–127. Most recently, Gonzalez Toledo and 

colleagues identified IC damage in 30.4% of ischemic stroke patients exhibiting atypical post-

stroke ECGs; compared to a 7.3% prevalence in patients with normal post-stroke cardiac 

function 7. While these results suggest an increased risk of cardiac dysfunction following 
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insular ischemic stroke 7, it is important to note that preliminary mechanistic conclusions from 

these clinical studies are largely speculative 105. Given the high prevalence of shared risk 

factors between ischemic stroke and cardiovascular disorders, it is clinically challenging in 

these studies to confidently establish the neurological injury as the cause (or consequence) of 

SIHI 2. Moreover, IC proximity to the MCA further complicates the pathophysiological 

interpretation of current clinical findings. In the past, clinical studies of SIHI predominantly 

recruited MCAO patients, due to the high incidence of this ischemic event. However, resulting 

damage in this stroke region extends beyond the IC 56,120; minimizing the specificity of 

observed results. As such, experimental establishment of a focal insular ischemic stroke animal 

model is critical for the elimination of these clinically-inevitable confounding variables. 

1.6.3 Lateralization of insular autonomic function 

Lateralization of insular autonomic function remains a current topic of discussion, 

bound by contradicting clinical results 127–132. While early researchers identified right IC 

control over sympathetic activity 127,131,132, present studies have produced opposing 

observations 128–130. Most recently, Krause and colleagues were able to temporally localize 

autonomic lateralization to the anatomical subdivisions of the IC; discerning a right-sided 

parasympathetic (and left-sided sympathetic) predominance in the posterior IC 130.   

Intriguingly, current clinical reports have correlated right insular ischemic stroke to 

worsened outcomes 125,133,134. As such, it is theorized that ischemic damage to the right IC 

inhibits parasympathetic control, shifting cardiovascular balance towards an increased 

sympathetic tone 105,130; ultimately causing more severe outcomes of SIHI. 

1.6.4 Rodent models of insular ischemic stroke 

In 1989, Cechetto and colleagues were first to examine stroke-induced autonomic and 

myocardial changes using a rodent model of MCAO; identifying an increase in blood pressure, 

NE and myocardial damage 3 h after ischemic stroke 55. Based upon these results, Cechetto 

and colleagues concluded that their acute stroke model successfully mimicked clinical 

observations of post-stroke autonomic dysfunction 55, further using it to examine lateralization 

of IC autonomic control 135. Interestingly, this subsequent study identified the presentation of 

severe sympathetic consequences following right MCAO 135, implying a right-sided 



www.manaraa.com

15 
 

parasympathetic dominance of IC lateralization in the rat. Yet, to our knowledge, additional 

experimental studies have not been performed to validate this finding. 

 As mentioned previously, MCAO (within humans and rodents) creates a large infarct 

region, extending beyond the IC 55,56,120. As such, the isolated association of ischemic IC 

damage with SIHI has yet to be confirmed. In 1995, Butcher and Cechetto reproduced similar 

autonomic changes to those observed in their MCAO stroke model, following injection of the 

excitotoxin D,L-homocysteic acid into the rat IC 136. However, while this method produced 

focal IC damage, the injury was not ischemic; limiting translational potential. With recent 

advances in experimental stroke techniques 57–59, ET-1 can be used to establish a more focal, 

and thus applicable, rodent model of insular ischemic stroke; confirming the mechanistic role 

of IC damage in SIHI. 

1.7 The Acoustic Startle Response 

1.7.1 Circuitry of the acoustic startle response 

In animals, including humans, the startle response is an autonomic reflex that serves to 

protect the body 137–139. Following a sudden and intense stimulus, excitation of the startle reflex 

will initiate rapid activation of cranial, facial and skeletal motor neurons; in preparation for 

facilitation of a fight-or-flight reaction 138,139. Initiation of the startle response can be evoked 

through a variety of sensory signals; including acoustic, tactile, visual and vestibular stimuli 
140 – of which the acoustic startle response (ASR) remains the most studied 139. In humans, 

behavioural observations of this ASR are predominantly measured through the eye-blink reflex 
141,142. 

   Mediation of the ASR occurs through a simple neural circuit in the lower brainstem 
139,143,144, consisting of three main synaptic sites: cochlear root neurons (CRNs), the caudal 

pontine reticular nucleus (PnC) and facial motor neurons (Figure 2) 145,146. In response to a 

loud auditory stimulus, spiral ganglion cells of the cochlea will directly stimulate neighbouring 

hair cells, transferring the sensory signal to CRNs of the auditory nerve 145. From here, axons 

of CRNs extend to the brainstem, synapsing with the cochlear nucleus (CN), which in turn, 

synapses with the PnC 146,147. The PnC serves as the indispensable sensorimotor interface of 

the ASR 148–152. Upon receiving direct acoustic input from CN axons, giant neurons of the PnC 

will project onto cranial, facial and skeletal neurons 152,153 to initiate a reflexive motor response 

(Figure 2). 
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Figure 2. Neural circuitry of the acoustic startle response. In response to a loud auditory 
stimulus, spiral ganglion cells of the cochlea will stimulate cochlear hair cells; transferring the 
sensory signal along the auditory nerve to the cochlear nucleus (CN) of the lower brainstem. 
CN axons provide direct acoustic input to giant neurons of the caudal pontine reticular nucleus 
(PnC). In turn, these giant neurons of the PnC directly synapse onto cranial, facial and skeletal 
motor neurons, to initiate a rapid reflexive response. Adapted from Koch (1999) 139. 
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1.7.2 Prepulse inhibition of the acoustic startle response 

Enhancement or attenuation of the ASR can be modulated through a variety of 

influences, including habituation 144,154,155, sensitization 144,156,157 and prepulse inhibition (PPI) 
158,159. In recent years, PPI of the ASR has received growing attention; serving as a reliable 

measure of sensorimotor gating 139,160,161. Sensory gating is an autonomic process responsible 

for the filtration of unnecessary or redundant external stimuli 160–162. Proper function of this 

gating system is imperative for efficient cognitive processing, minimizing overstimulation of 

higher cortical brain regions 160,161. 

PPI is the neurological phenomenon in which a weak prestimulus (prepulse) inhibits 

the reaction to a subsequent strong, startling stimulus; attenuating normal ASR amplitude 

(Figure 3A) 145,159. Exact modulatory mechanisms of PPI on the ASR remain unknown 
139,145,163, however, present evidence suggests a direct inhibition of the PnC (Figure 3B) 
148,152,164,165. In response to an acoustic prepulse stimulus, CN axons will directly innervate the 

inferior colliculus (IFC); a midbrain structure vital for acoustic PPI propagation 166–169. From 

here, the sensory signal is relayed to the superior colliculus (SPC) 170, which in turn, synapses 

with the pedunculopontine tegmental nucleus (PPTg) 171–173. Anatomically, the PPTg contains 

a descending cholinergic projection, directly extending to the PnC of the ASR pathway 174–176. 

As such, stimulation of the PPTg initiates the release of ACh, inhibiting PnC excitation (Figure 

3B) 174–176. Interestingly, ACh acts on the PnC through slow-responding muscarinic receptors, 

eliciting a prolonged inhibitory effect 163,167. Consequently, this long-lasting inhibition will 

attenuate any subsequent startle responses occurring within 30-500 ms after prepulse 

administration 163. 

Currently, recognition of autonomic dysfunction within the rat is predominantly 

classified through measurements of heart rate variability (HRV) or nerve discharge, requiring 

the use of invasive experimental procedures 135,136. However, Saitoh and colleagues have 

reported a noradrenergic influence on PPI; observing deficits in sensorimotor gating following 

blockage of this sympathetically-controlled hormonal system 177. As such, PPI of the ASR was 

implemented in this thesis, to serve as an alternate (and less intrusive) behavioural 

measurement of autonomic impairment. 

1.7.3 Rodent models of the acoustic startle response 

Recognition of the ASR in rats was first reported by Prosser and Hunter in 1936, 
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Figure 3. Schematic overview of PPI and associated neural circuitry. (A) Schematic 
representation of PPI. Administration of a weak prestimulus (prepulse) inhibits the reaction to 
a subsequent strong, startling stimulus; attenuating normal ASR amplitude. Adapted from 
Koch and Schnitzler (1997) 145. (B) Neural circuitry of PPI. In response to an acoustic prepulse 
stimulus, cochlear nucleus (CN) axons will directly innervate the inferior colliculus (IFC). The 
sensory signal is then relayed to the superior colliculus (SPC), which in turn, synapses with the 
pedunculopontine tegmental nucleus (PPTg). Stimulation of the PPTg initiates the release of 
acetylcholine, ultimately inhibiting PnC excitation and attenuating the ASR. Adapted from 
Fendt, Li and Yeomans (2001) 163.  
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confirming identical elicitation and ASR patterns in both humans and rats 139,178. Since then, 

the rodent ASR has been extensively studied, in an attempt to better understand human 

mechanisms of sensorimotor integration 139. In small animals, like the rat, measurements of the 

ASR are recorded from a “whole body” reflex; analogous to the “eye-blink” reflex in humans 
141,142,178. The ASR becomes functional immediately after the onset of hearing, at 

approximately postnatal day 12 in rats 179,180. Differences in strain, and individual variability, 

can alter the magnitude of the ASR 181,182. However, this does not change the quality, or pattern, 

of the reflex; simply causing an enhancement or attenuation of startle magnitude 145. As such, 

the ASR in rodents serves as a reliable and robust measurement of sensorimotor integration 
145.  

Similar to the ASR, identical mechanisms of PPI have been observed in humans and 

rats 158,161,183. In both species, the amplitude of PPI remains dependent on the intensity of the 

prepulse stimulus, as well as the time interval between presentation of the prepulse and 

subsequent startle stimulus, referred to as the interstimulus interval (ISI) 163,184,185. It is 

important to note that due to the neural complexity of PPI mediation and modulation, certain 

physiological manipulations may only affect PPI outcomes at a specific prepulse intensity or 

ISI 184. As such, administration of assorted prepulse trials, varying in intensity (75 dB and 85 

dB) and ISI (30 ms and 100 ms), is encouraged when assessing PPI of sensorimotor gating 184. 

1.8 Rationale, Objective and Hypothesis      

The neurological influence of ischemic stroke in the generation of SIHI has been 

acknowledged for several years 2,93. Yet, despite decades of research, the underlying 

pathophysiology of this intricate brain-heart connection remains unknown. Past studies have 

inferred a causative role of autonomic dysfunction in the manifestation of SIHI 93–97. 

Supporting this, recent clinical data has identified an enhanced prevalence of SIHI in patients 

with damage to the IC 7,124–127, a cortical site vital for the autonomic regulation of 

cardiovascular function 2,108,109. Intriguingly, these clinical studies have discerned worse 

prognostic outcomes with right IC damage 125,133,134; implying a lateralization of IC autonomic 

function. However, it is important to note that preliminary mechanistic conclusions from these 

clinical studies are largely speculative 105, given the high prevalence of shared risk factors 

between ischemic stroke and cardiovascular disorders. As such, the establishment of a novel 

focal insular ischemic stroke animal model is crucial to eliminate these clinically-inevitable 
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confounding variables, and affirm current pathophysiological predictions. Furthermore, 

development of this novel rodent model will allow for the implementation of an accompanying, 

non-invasive behaviour test; aimed to evaluate functional post-insular stroke autonomic 

deficits. Successful application of this behavioural test could vitally improve current 

knowledge of IC autonomic lateralization. 

 In 1989, Cechetto and colleagues successfully reproduced clinical outcomes of stroke-

induced autonomic and myocardial damage, using a rat model of MCAO 55. However, use of 

this technique creates a large infarct region, extending beyond the IC 55,56,120. Consequently, 

the isolated association of ischemic IC damage with SIHI has yet to be confirmed. 

Additionally, due to the invasiveness and severity of the procedure 186, this experimental study 

only assessed acute timepoints 55. Therefore, to date, little is known about the long-term 

prognosis and chronic effects of SIHI. Development of a focal insular stroke rodent model will 

confine primary ischemic damage to the IC, and allow for the extended observation of chronic 

pathology.     

 Recently, the contribution of inflammation, both cerebral and systemic, to SIHI has 

gained increased interest 105,187,188. Pathologically, remote regions of neuroinflammation post-

ischemic stroke have negatively corresponded to worse functional outcomes 68,72,73,86. As 

described previously, the IC belongs to an intricate network of cortical and subcortical 

structures, responsible for the regulation of autonomic cardiovascular function 2,108,109,189. As 

such, histological identification of secondary neuroinflammation, in any of these forebrain 

regions, could provide crucial insight into the neural manifestation of SIHI. Systemically, the 

neuroinflammatory activation of M1 microglia has been known to disrupt the BBB, initiating 

a peripheral immune response 64. Intriguingly, Olshansky has hypothesized a parasympathetic 

role in the downregulation of myocardial inflammation 114. A decrease in parasympathetic tone 

following IC damage could abolish beneficial effects of this PSNS regulation; enhancing 

systemic influence on cardiac inflammation, and resulting SIHI 105; a mechanistic pathway yet 

to be examined.   

 The brain-heart connection remains a relevant and fascinating area of research. While 

past clinical, epidemiological and experimental studies have led to the identification and 

classification of this complex phenomenon, questions of mechanistic contribution remain 

unanswered. Successful establishment of a novel focal insular ischemic stroke rodent model 
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will allow for the extensive investigation of downstream behavioural and pathological 

outcomes; enhancing current pathophysiological knowledge of SIHI. 

Hypothesis: SIHI is the consequence of autonomic dysfunction and inflammation, specific to 

insular ischemic stroke.     

Objective: To establish a novel rodent model of focal insular ischemic stroke that can be used 

to evaluate chronic downstream behavioural and pathological outcomes of the brain and heart; 

improving mechanistic knowledge of SIHI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

22 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Section 2: METHODS 
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2.1 Animals 

 Experimental animal procedures were performed in accordance with the Canadian 

Council on Animal Care guidelines and approved by the Western University Animal Care 

Committee (Protocol 2016-027; Appendix). Upon arrival, 54 six-month old male Wistar rats 

(Charles River Laboratories, Montreal, QC), weighing 550-750 g, were individually housed at 

Western University’s Animal Care and Veterinary Services on a 12:12 hour light/dark cycle 

alternating at 1 AM/PM. Room temperature was maintained at 22-24°C, and all rats accessed 

food and water ad libitum. Prior to surgical procedures, rats were randomly assigned to 

experimental groups. 

2.2 Rat Models 

2.2.1 Endothelin-1 ischemic model 

ET-1 is a potent vasoconstrictor frequently used in animal models to produce ischemic 

strokes, similar to those observed in humans 57–59,190–192. Focal injection of ET-1 inhibits 

cerebral blood flow to the targeted brain region for approximately 1 h, prior to reperfusion 57. 

To mimic ischemic stroke in our rodent model, human ET-1 (Lot E7764; Sigma-Aldrich, 

Oakville, ON) was dissolved in sterile saline to achieve a final concentration of 20 pmol/µL. 

Aliquots of 10 µL were stored at ‑80°C until required.     

2.2.2 Ibotenic acid neurotoxic model 

Although ET-1 is most representative of focal human ischemic stroke 191, associated 

ischemia can damage all structures located at the injection site; including intersecting white 

matter fibers 190,193. This makes it difficult to conclude whether observed behavioural and 

pathological outcomes are a direct effect of targeted damage, or an indirect effect of unspecific 

white matter injury. To overcome this confounding dilemma, administration of the neurotoxin 

ibotenic acid (IA) was used as a positive control in this study; causing selective neuronal 

damage within the IC 193,194. For this thesis, IA (Lot ab120041; Abcam Inc., Toronto, ON) was 

dissolved in 0.1 M sterile phosphate-buffered saline (PBS) to achieve a final concentration of 

5 µg/µL. Aliquots of 10 µL were stored at -80°C until required. An additional group of saline 

control animals received administration of 0.1 M sterile PBS.      
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2.2.3 Surgical procedures 

Rats were placed in a Harvard anesthesia box (Harvard Apparatus, Holliston, MA) and 

anesthetized with 4% isoflurane (Baxter Corporation, Mississauga, ON) mixed with 2.0 L/min 

of oxygen. Once fully anesthetized, the head of the rat was shaved to expose the scalp. Rats 

were then transferred to a Kopf stereotaxic frame (David Kopf Instruments, Tujunga, CA) to 

secure head position. While under anesthesia, rat body temperature was maintained at 37°C by 

heating pad. Anesthesia was maintained at 2.5% isoflurane for the duration of surgery.  

Prior to incision, the rat’s scalp was sanitized with soap, followed by 70% ethanol and 

iodine; to minimize risk of infection. A skin incision was then made along the scalp, exposing 

the rat skull and bregma. Pre-determined stereotaxic coordinates 195 (in reference to bregma) 

were used to locate the targeted IC brain region (anterior/posterior (AP): -1.00 mm, 

medial/lateral (ML): ±6.50 mm, dorsal/ventral (DV): -7.00 mm) (Figure 4). Upon 

identification, a single burr hole was drilled into the skull to allow for the 1 µL unilateral 

injection of ET-1, IA or PBS into the right (R) or left (L) IC (n=8/experimental group). 

Injections were performed at a rate of 0.2 µL/min using a 32-guage Hamilton syringe 

(Hamilton Company, Reno, NV), followed by an in situ period of 5 min to prevent solution 

backflow. Post-injection, the burr hole was covered with bone wax (Ethicon LLC, Puerto Rico, 

TX) prior to suturing of the incision site. Rats were then administered a 1 mL/kg subcutaneous 

injection of buprenorphine analgesic (Champion Alstoe Inc., Whitby, ON) and a 0.03 mL 

intramuscular injection of Baytril antibiotic (Bayer Inc., Toronto, ON). Following surgery, rats 

were returned to their individual cage and monitored closely until sternal recumbency was 

regained. Rats were then left freely until behaviour testing and euthanasia 28 d post-surgery. 

Experimental groups were balanced during each surgical day to avoid the introduction of day-

specific confounding variables. 

In addition to the aforementioned groups, an additional control group of no injection 

(NI) animals (n=6) were included in this study. Aside from not receiving a burr hole within the 

skull, or intracranial injection, these rats underwent identical surgical procedures, remaining 

under anesthesia for an equivalent amount of time as injection groups. A post-surgery mortality 

rate of 3.8% was observed in PBS-injected control animals (n=2), with a 0% mortality rate 

observed in all other experimental groups.                    
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Figure 4. Schematic representation of targeted insular cortex brain region. (A) Pre-
determined stereotaxic coordinates were used to locate the IC (red star), in reference to bregma 
(blue dot). Upon identification, a single burr hole was drilled into the rat’s skull to allow for 
the 1 µL unilateral injection of ET-1, IA or PBS into (B) the right or left IC (purple region). IC 
= insular cortex 
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2.3 Behaviour Testing 

2.3.1 Prepulse inhibition of the acoustic startle response 

 Twenty-eight days post-surgery, rats were subjected to behaviour testing. PPI of the 

ASR was used to assess deficits in sensorimotor gating following IC injury 139,160,161,184. 

Experimental groups were balanced throughout behavioural testing to avoid the introduction 

of day-specific confounding variables. 

 Two days prior to PPI measurement (day 26), rats were randomly assigned to 1 of 4 

startle boxes (Med Associates Inc., St. Albans, VT) and subjected to four acclimation periods 

(2/day) (Figure 5). Rats were placed into the same startle chamber for the duration of their 

behavioural testing to avoid the introduction of instrument-specific confounding variables. 

All rats were held inside the startle chambers using plastic holders. These holders were 

then attached to transducer platforms, which were used to measure motor output; a reliable 

indicator of the ASR 184. During the first three acclimation periods, rats were exposed to 65 dB 

of white background noise for 5 min. For the final acclimation period, rats were subjected to 

65 dB of white background noise for 5 min, followed by 12 acoustic startle stimuli increasing 

in volume by 5 dB intervals (65-120 dB). This measured and accounted for differences in 

individual startle responses between rats, as some naturally startled more or less than others. 

Sensitivity of the transducer platform was then adjusted, based off natural ASR to these 12 

stimuli.    

Following acclimation, rats underwent PPI testing (day 28) comprised of three phases: 

an acclimation phase, habituation phase (Block I) and PPI phase (Block II). During the 

acclimation phase, rats were exposed to 65 dB of white background noise for 5 min. This was 

immediately followed by Block I, in which rats were subjected to 50 identical trials containing 

an acoustic startle stimulus of 120 dB, administered every 20 s for a duration of 20 ms. 

Throughout Block II, rats were exposed to 50 randomized trials of varying prepulse stimuli, 

occurring every 20 s (Table 1). 

 Startle response data was collected and analyzed using Startle Reflex 5.95 software 

(Med Associates Inc., St. Albans, VT). PPI was calculated for each rat as a comparison to their 

individual startle response, using the following formula: 

% PPI = [1 – (PPI-pulse trial amplitude / pulse alone trial amplitude)]*100 
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Figure 5. Experimental timeline. Six-month old male Wistar rats underwent stereotaxic 
surgery to receive a 1 µL unilateral intracranial injection of ET-1 (20 pmol/µL), IA (5 µg/µL) 
or PBS (0.1 M) into the right or left IC. An additional control group of NI rats received identical 
surgical procedures, without reagent injection. At 26 and 27 d post-surgery, rats were subjected 
to four acclimation periods (2/day), in preparation for the PPI behaviour test. At 28 d post-
surgery, rats underwent PPI behaviour testing prior to euthanasia.   
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Table 1. Prepulse and startle stimuli parameters used during Block II of the PPI 
behaviour test. Rats were exposed to 50 randomized trials of varying prepulse intensity and 
interstimulus intervals (ISIs) to examine changes in sensorimotor gating following IC injury. 

 
Number 
of Trials 

Prepulse 
Intensity 

Prepulse 
Duration 

Startle 
Intensity 

Startle 
Duration 

Interstimulus 
Interval 

Trial A 10 - - 120 dB 20 ms - 

Trial B 10 75 dB 4 ms 120 dB 20 ms 30 ms 

Trial C 10 75 dB 4 ms 120 dB 20 ms 100 ms 

Trial D 10 85 dB 4 ms 120 dB 20 ms 30 ms 

Trial E 10 85 dB 4 ms 120 dB 20 ms 100 ms 
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2.4 Euthanasia   

Immediately following behaviour testing (day 28), rats were euthanized via 2.5 mL 

intraperitoneal injection of pentobarbital (48 mg/mL; Bimeda-MTC, Cambridge, ON). Rats 

were transcardially perfused with 200 mL of 0.01 M PBS (pH 7.35), followed by 300 mL of 

4% paraformaldehyde (PFA). After perfusion, brain and heart tissue were extracted and 

temporarily stored in 4% PFA at 4°C for an additional 24 and 48 h, respectively. Tissue was 

then transferred to 30% sucrose and stored at 4°C until sectioned.  

2.5 Brain Histology and Immunohistochemistry 

2.5.1 Tissue sectioning 

 Brain tissue was flash frozen in Tissue-Tek® O.C.T. Compound (Sakura Finetek USA 

Inc., Torrance, CA) and sectioned into 35 µm coronal sections using the CryoStar NX50 

cryostat (Thermo Fisher Scientific, Waltham, MA). Free-floating sections were divided into 6 

series (210 µm serial sections) and stored in cryoprotectant solution at -20°C until stained.    

2.5.2 Thionine histochemistry 

 Brain tissue was histologically stained with thionine to visualize cellular Nissl 

substance and identify local cell death following IC injury 196. Prior to staining, tissue sections 

were washed in 0.01 M PBS (pH 7.35) for 1 h at room temperature to remove residual 

cryoprotectant. Sections were then pre-mounted on VWR VistaVision™ microscope slides 

(VWR International, Radnor, PA) with 0.3% gelatin (Sigma-Aldrich, Oakville, ON) and left 

to air-dry overnight. The next day, mounted sections were rehydrated by immersion into 

descending concentrations of ethanol (100%, 95%, 70%, 50%), followed by immersion into 

distilled water (dH2O). Sections were then submerged into 0.5% thionin solution for 35 s, prior 

to dehydration. During dehydration, sections were exposed to a series of ascending ethanol 

concentrations (50%, 70%, 95%, 100%) before cleared in xylene (Caledon Laboratories Ltd., 

Georgetown, ON). Slides were then coverslipped using DePex mounting medium (VWR 

International, Radnor, PA) and stored at room temperature. 

2.5.3 Immunohistochemistry 

Brain tissue was immunohistochemically stained for either (i) activated M1 subtype 

microglia, (ii) astrocytes or (iii) neurons, to assess neuroinflammation (microglia/astrocyte 
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activation) 197–200 and secondary neuronal damage (loss of neurons) 201,202 post-insular injury. 

Activated microglia were identified through detection of the major histocompatibility complex 

II (MHC II) molecule, using an OX-6 primary antibody (Lot 554926; BD Biosciences, 

Mississauga, ON). Reactive astrocytes were identified through detection of the glial fibrillary 

acidic protein (GFAP), using a GFAP primary antibody (Lot G3893; Sigma-Aldrich, Oakville, 

ON). Neurons were identified through detection of the DNA-binding neuronal nuclei (NeuN) 

protein, using a NeuN primary antibody (Lot MAB377; Sigma-Aldrich, Oakville, ON). 

For all three stains, tissue sections were washed in 0.01 M PBS (pH 7.35) for 1 h at 

room temperature to remove residual cryoprotectant. Free-floating sections were then 

incubated in 1% hydrogen peroxide (H2O2) for 10 min prior to blocking in 2% horse serum 

(Lot H0146, Sigma-Aldrich, Oakville, ON) for 1 h at room temperature. Sections were then 

incubated in diluted primary antibody solution (OX-6, GFAP or NeuN) overnight at 4°C (Table 

2). The next day, sections were briefly washed with 0.01 M PBS (pH 7.35) for 15 min prior to 

incubation in diluted (1:500) biotinylated anti-mouse IgG secondary antibody solution (Lot 

31806; Thermo Fisher Scientific, Waltham, MA). Tissue remained in secondary antibody 

solution for 1 h at room temperature. Sections were then incubated in 2% Avidin-Biotin 

Complex (ABC) reagent (Lot PI32020; Thermo Fisher Scientific, Waltham, MA) for 1 h. 

Sections were then stained with 0.05% 3,3’-diaminobenzidine tetrahydrochloride (DAB; 

Sigma-Aldrich, Oakville, ON) diluted in 1% H2O2 for 5 min (OX-6) or 30 s (GFAP; NeuN). 

Sections were mounted onto VWR VistaVision™ microscope slides with 0.3% gelatin and left 

to air-dry overnight. The following day, sections were dehydrated via exposure to ascending 

ethanol concentrations (50%, 70%, 95%, 100%) and cleared in xylene. Slides were then 

coverslipped using DePex mounting medium and stored at room temperature. Each staining 

cohort included tissue representation from all experimental groups to eliminate day-specific 

confounding factors associated with natural variance in staining procedures.          

2.6 Heart Histology 

Heart tissue preparation and analysis was completed with assistance from Dr. Brittany 

Balint (Vulnerable Brain Lab, Schulich School of Medicine & Dentistry, Western University) 

and Caroline O’Neil (Molecular Pathology Facility, Robarts Research Institute, Western 

University).  
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Table 2. Product summary of primary antibodies used for the immunohistochemical 
staining of brain tissue. 

  

Antibody Host Species Dilution Ratio Cellular Target 

 

OX-6 
 

 

Mouse - monoclonal 

 

1:1000 

 

Activated microglia 

 

GFAP 
 

 

Mouse - monoclonal 

 

1:2000 

 

Reactive astrocytes 

 

NeuN 
 

 

Mouse - monoclonal 

 

1:1000 

 

Neurons 
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2.6.1 Tissue sectioning  

 Excess connective tissue was removed from rat hearts, prior to placement into tissue 

cassettes (Thermo Fisher Scientific, Waltham, MA) and dehydration via immersion into 

ascending ethanol concentrations (70%, 95%, 100%). Heart tissue was then cleared in xylene, 

before embedded in 65°C paraffin wax. Hearts were embedded to cassette blocks in their 

anterior anatomical position.   

Prior to sectioning, heart tissue was rehydrated in an ice bath for 15 min. Tissue was 

then sliced into 5 µm coronal sections using the Leica CM350 microtome (Leica Biosystemcs 

Inc., Concord, ON). Ribbons of 5-6 tissue sections were then placed into a warm water bath to 

allow for flattening and separation of tissue. Individual sections were then mounted to 

SuperFrost Plus microscope slides (VWR International, Radnor, PA) and incubated overnight 

at 42°C for optimal adhesion. Slides were stored at -20°C until stained.       

2.6.2 Masson’s trichrome histochemistry 

 Heart tissue was histologically stained with Masson’s trichrome to identify regions of 

collagen deposition post-insular injury, indicating cardiac fibrosis 203,204. Prior to staining, pre-

mounted tissue sections were deparaffinized in xylene for 15 min. Sections were then 

rehydrated by immersion into descending concentrations of ethanol (100%, 95%, 70%), 

followed by immersion into dH2O. Tissue sections were then placed into Bouin’s fixative at 

56°C for 1 h, prior to treatment with Weigert’s hematoxylin for 10 min. Sections were then 

stained with Biebrich scarlet-acid fuchsin solution for 2 min and rinsed using 1% 

phosphotungstic acid. Tissue was then transferred to an Aniline blue dye for 5 min and rinsed 

using 1% acetic acid, prior to dehydration. During dehydration, sections were rapidly exposed 

to a series of ascending ethanol concentrations (95%, 100%) before cleared in xylene. Slides 

were then coverslipped using DePex mounting medium. Heart tissue was stained red, blue and 

purple; representing cardiomyocytes, collagen fibers and nuclei, respectively.   

2.7 Tissue Analysis  

2.7.1 Imaging and quantification 

All stained tissue sections were visualized and imaged using a Nikon Eclipse Ni-E 

upright microscope with Nikon DS Fi2 colour camera and NIS Elements imaging software 

(Version 4.30.02; Nikon Instruments Inc., Melville, NY). The experimenter remained blinded 
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to all group identities throughout quantification to eliminate bias observations. Brain tissue 

stained with thionine confirmed injury location within the IC and was used to select a staining 

cohort (n=6) for each experimental group, dependent on precision of injury location. One NI 

animal was excluded as an outlier during quantification, due to abnormal amounts of 

neuroinflammation (activated microglia).  

To analyze OX-6 and GFAP-stained brain tissue, four stitched photomicrographs (per 

animal; 10X magnification) of 35 µm coronal sections were imaged for each stain (AP: +2.70 

mm, +1.20 mm, -0.40 mm and -3.30 mm, in reference to bregma). Using ImageJ software 

(Version 1.45; National Institute of Health, Bethesda, MD), % area coverage densitometry 

measurements of OX-6 and GFAP immunoreactivity were quantified for four regions of 

interest (ROI): forceps minor, corpus callosum, internal capsule and ventroposterior (VP) 

thalamus (Figure 6). For forceps minor (AP: +2.70 mm), internal capsule (AP: -3.30 mm) and 

VP thalamus assessment (AP: -3.30 mm), analysis was performed using a single coronal 

section. Furthermore, OX-6 and GFAP immunoreactivity was quantified in both hemispheres; 

comparing regions contralateral and ipsilateral to the injection site. To quantify OX-6 and 

GFAP immunoreactivity within the corpus callosum, % area coverage measurements were 

calculated and averaged for three coronal sections (AP: +1.20 mm, -0.40 mm and -3.30 mm, 

in reference to bregma).       

To analyze NeuN-stained brain tissue, four stitched photomicrographs (per animal; 

10X magnification) of 35 µm coronal sections were imaged (AP: +2.70 mm, +1.60 mm, -2.12 

mm and -3.30 mm, in reference to bregma). Using NIS Elements imaging software, automated 

cell count measurements of NeuN immunoreactivity were performed for five ROIs: PFC (AP: 

+2.70 mm), ACC (AP: +1.60 mm), amygdala (AP: -2.12 mm), hypothalamus (AP: -2.12 mm) 

and VP thalamus (AP: -3.30 mm) (Figure 7). For all five ROIs, NeuN immunoreactivity was 

quantified in both hemispheres of a single coronal section, comparing regions contralateral and 

ipsilateral to the injection site.      

To analyze Masson’s Trichrome-stained heart tissue, eight stitched photomicrographs 

(per animal; 10X magnification) of 5 µm coronal sections were imaged from the left atrium 

(LA). Using ImageJ software, colour deconvolution was performed to isolate blue-stained 

tissue (collagen fibers). Percent area coverage of LA cardiac fibrosis was identified as the 

averaged total fraction of blue-stained tissue present within the eight imaged tissue regions. 
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Figure 6. Schematic representation of brain ROIs selected for OX-6 and GFAP analysis. 
To investigate the presence of neuroinflammation, densitometry measurements of OX-6 or 
GFAP immunoreactivity were performed within the (A) forceps minor, (B1-B3) corpus 
callosum, (C) internal capsule and (D) ventroposterior thalamus. Purple regions represent areas 
of interest. AP = anterior/posterior stereotaxic coordinate (in reference to bregma). 
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Figure 7. Schematic representation of brain ROIs selected for NeuN analysis. To 
investigate the presence of neuronal loss, automated cell count measurements of NeuN 
immunoreactivity were performed within the (A) prefrontal cortex, (B) anterior cingulate 
cortex, (C) amygdala, (D) hypothalamus and (E) ventroposterior thalamus. Purple regions 
represent areas of interest. AP = anterior/posterior stereotaxic coordinate (in reference to 
bregma).  
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2.7.2 Statistical analysis  

Statistical analyses were conducted using GraphPad Prism software (Version 7.0; 

GraphPad Software Inc., La Jolla, CA). Statistical significance of dependent variables was 

assessed through two-way analysis of variance (ANOVA) followed by Tukey’s multiple 

comparison test. Data are presented as mean ± standard error of the mean (SEM), with a 

statistical alpha of 0.05.  
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3.1 Qualitative Confirmation of Targeted Insular Damage 

Initial qualitative analysis of injury location was performed to confirm IC damage. 

Brain tissue was histologically stained with thionine to identify Nissl bodies (Figure 8A,B), 

indicating the presence of healthy cell populations. Due to the rapid recovery rate of ischemic 

injury (induced by ET-1), infarct scars were often difficult to clearly visualize at low 

magnification (2X objective lens). However, use of a 20X objective lens revealed a loss of 

neurons and increased presence of supporting glial cells within the IC of injured groups 

(IA/ET-1), compared to uninjured groups (PBS/NI; Figure 8A,B). Additionally, brain tissue 

was immunohistochemically stained with NeuN (Figure 8C,D) and OX-6 (Figure 8E,F) for 

secondary confirmation of targeted IC damage. Staining of tissue with NeuN was used to 

identify neurons and confirmed neuronal loss within the IC of injured groups (IA/ET-1; Figure 

8C). Tissue stained with OX-6 identified substantial amounts of activated microglia present 

within the IC of injured groups (IA/ET-1; Figure 1E), further confirming local damage.     

3.2 Behavioural Assessment  

3.2.1 Left insular damage corresponds with an observed trend of reduced prepulse inhibition 

In developing this rodent model of focal insular ischemic stroke, it was crucial to 

establish an accompanying behaviour test, capable of identifying autonomic deficits post-

insular injury. More importantly, successful implementation of this test could provide valuable 

insight into the lateralization of IC autonomic function. To identify and evaluate autonomic 

dysfunction, PPI of the ASR was measured 28 d following insular injury; indicating functional 

changes in sensorimotor gating. In the past, blockage of the sympathetically-controlled 

noradrenergic system has corresponded with impaired sensorimotor gating 177. As such, rats 

subjected to IC injury, causing decreased sympathetic outflow, were expected to display a 

reduction in PPI; with damage to the IC disrupting sympathetic control of the noradrenergic 

system, inhibiting normal sensorimotor gating processes.   

Administration of the ASR subjected rats to 40 randomized trials of varying prepulse 

stimuli, changing in stimulus intensity (75 dB or 85 dB) and ISI (30 ms or 100 ms). An 

additional 10 trials presented startle stimuli only, to attain baseline startle responses of each 

rat. Percent PPI was calculated as the startle reduction of this averaged baseline measurement, 

with a higher % PPI representing a greater reduction in startle response. 
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Figure 8. Qualitative confirmation of insular damage. Representative 2X photomicrographs 
of coronal rat brain tissue histologically stained with (A,B) thionine, or 
immunohistochemically stained with (C,D) NeuN or (E,F) OX-6, 28 d following intracranial 
injection of PBS (n=7), IA (n=8), ET-1 (n=8) or NI (n=6) into the right or left insular cortex. 
Outlined areas represent higher-magnified regions (20X) of the insular cortex. At 28 d post-
injection, injured rats displayed neuronal loss (A,C: IA/ET-1) and enhanced microgliosis (A,E: 
IA/ET-1) compared to uninjured groups (A,C,E: PBS; B,D,F: NI), confirming insular damage. 
Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered 
saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection  
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At 28 d post-insular injury, rats subjected to left IC damage (IA/ET-1) displayed an 

observed trend of deficient sensorimotor gating. Administration of a 75 dB prepulse, with 30 

ms ISI, caused a notable decrease in % PPI of IA-L (60.69% ± 14.05%) and ET1-L (59.58% ± 

10.89%) groups, compared to (i) IA-R (96.24% ± 12.93%) and ET1-R (88.51% ± 13.78%) 

injury groups and (ii) PBS-L (102.31% ± 12.65%) and NI (100.00% ± 6.00%) control groups 

(Figure 9A). However, completion of a two-way ANOVA identified no significant effect of 

injury (F(3,50) = 2.42, p = 0.08) and/or insular damage lateralization (F(1,50) = 2.38, p = 0.13). 

Additional trials consisting of (i) 75 dB prepulse with 100 ms ISI (Figure 9B), (ii) 85 dB 

prepulse with 30 ms ISI (Figure 9C) and (iii) 85 dB prepulse with 100 ms ISI (Figure 9D) 

displayed similar results, demonstrating a minor decrease in % PPI of left injury groups 

(IA/ET-1). However, these observed reductions were not as substantial as the trending deficits 

observed after administration of a 75 dB prepulse with 30 ms ISI (Figure 9A).    

3.3 Analysis of Brain Immunohistochemistry 

3.3.1 Insular damage enhances white matter microgliosis, but not astrogliosis, in the corpus 

callosum 

Neuroinflammation is a known consequence of ischemic stroke, vital for post-ischemic 

tissue repair 35–37,53. However, not all neuroinflammation has been associated with beneficial 

effects. In particular, post-stroke chronic inflammation, of remote grey and white matter 

regions, has been shown to perpetuate secondary neurodegeneration in brain regions 

anatomically connected to the primary ischemic infarct 87–91; worsening prognostic outcomes 

and recovery time 68,72,73. We therefore used our established rodent model of focal insular 

ischemic stroke to identify remote regions of secondary cerebral inflammation that may 

contribute to the functional autonomic deficits observed, both clinically and experimentally, 

post-insular injury. 

 Initial analysis of white matter neuroinflammation was performed in the corpus 

callosum; the largest commissural fibre of the brain. Brain tissue was immunohistochemically 

stained with OX-6 or GFAP to identify activated microglia or reactive astrocytes, respectively, 

as both microgliosis and astrogliosis are known mechanisms of neuroinflammation 35–37,53,61. 

Densitometry measurements of % area coverage were quantified as the averaged total fraction 

of OX-6 or GFAP immunolabelled cells present within the corpus callosum of three coronal 

tissue sections. 
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Figure 9. Left insular damage corresponds with an observed trend of reduced prepulse 
inhibition. Percent PPI of the ASR was measured 28 d following intracranial injection of PBS 
(n=7), IA (n=8), ET-1 (n=8) or NI (n=6) into the right or left insular cortex. Rats were subjected 
to randomized trials of varying prepulse stimuli administered at (A) 75 dB, 30 ms before startle 
stimulus, (B) 75 dB, 100 ms before startle stimulus, (C) 85 dB, 30 ms before startle stimulus 
or (D) 85 dB, 100 ms before startle stimulus. Damage to the left insular cortex notably reduced 
% PPI, particularly during administration of a (A) 75 dB prepulse, 30 ms prior to startle 
stimulus. Data is presented as mean ± SEM and normalized to the NI group. IC = insular cortex, 
PPI = prepulse inhibition, PP = prepulse, ISI = interstimulus interval, NI = no injection, PBS 
= phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-1 
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At 28 d post-insular injury, OX-6 staining for activated microglia presented a 

significant effect of injury (F(3,38) = 12.59, p < 0.01, two-way ANOVA). Left IC damage 

resulted in enhanced corpus callosum microgliosis in rats injected with IA (9.82% ± 2.06%) or 

ET-1 (8.15% ± 2.24%), compared to PBS (3.32% ± 0.54%) and NI (1.41% ± 0.31%) rats 

(Figure 10A-C). Increased corpus callosum microgliosis was also observed following injection 

of IA (9.60% ± 1.71%) or ET-1 (5.71% ± 1.78%) into the right IC (Figure 10A,C), indicating 

no significant effect of insular damage lateralization (F(1,38) = 0.56, p = 0.46, two-way 

ANOVA). Rats subjected to injection of PBS into the right IC also displayed minimal 

microgliosis (2.84% ± 0.47%), similar to the PBS-L group (Figure 10A,C). Upon completion 

of Tukey’s multiple comparison test, a significant difference in corpus callosum microgliosis 

between NI/IA-L (p = 0.01), NI/IA-R (p = 0.01) and PBS-R/IA-R (p = 0.04) groups was 

confirmed (Figure 10C). A significant difference between injured groups (IA/ET-1; p = 0.26) 

or uninjured groups (NI/PBS; p = 0.83) was not observed (Figure 10C). GFAP staining for 

reactive astrocytes indicated no significant differences in corpus callosum astrogliosis between 

experimental groups (F(3,38) = 1.53, p = 0.22, two-way ANOVA), with all groups displaying 

similar measurements of GFAP % area coverage: NI (29.89% ± 2.67%), PBS-L (27.27% ± 

4.38%), PBS-R (24.38% ± 2.59%), IA-L (26.66% ± 1.96%), IA-R (22.57% ± 3.62%), ET1-L 

(23.31% ± 3.50%) and ET1-R (23.61% ± 2.16%) (Figure 11A-C).                

3.3.2 Insular damage does not enhance white matter microgliosis or astrogliosis in the forceps 

minor 

In addition to the corpus callosum, neuroinflammation was analyzed within the forceps 

minor. While the corpus callosum is anatomically proximal to the injured insular site, the 

forceps minor is a distal fibre bundle located anteriorly within the frontal lobe; allowing for 

the assessment of neuroinflammatory spread. Densitometry measurements of % area coverage 

were quantified as the total fraction of OX-6 (microglia) or GFAP (astrocytes) immunolabelled 

cells present within the forceps minor of one coronal tissue section. Comparisons of 

microgliosis or astrogliosis within the contralateral and ipsilateral forceps minor were 

performed to account for unilateral IC damage.  

 At 28 d post-insular injury, OX-6 staining for activated microglia presented no 

significant effect of injury for both left (F(3,38) = 2.65, p = 0.06, two-way ANOVA) and right 

(F(3,38) = 1.65, p = 0.19, two-way ANOVA) experimental groups. Following damage to the left 
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Figure 10. Insular damage significantly increases white matter microgliosis within the 
corpus callosum. Representative 2X photomicrographs of OX-6 immunohistochemical 
stained coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the corpus callosum. (C) Quantitative 
analysis revealed significant increases in microglia activation (% area coverage) within the 
corpus callosum 28 d following insular injury. Data is presented as mean ± SEM. Non-
matching letters indicate significant differences between experimental groups (p < 0.05, two-
way ANOVA followed by Tukey’s multiple comparison test). Scale bar = 500 µm (2X) or 50 
µm (20X). IC = insular cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 = 
endothelin-1, NI = no injection  
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Figure 11. Insular damage does not enhance white matter astrogliosis within the corpus 
callosum. Representative 2X photomicrographs of GFAP immunohistochemical stained 
coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the corpus callosum. (C) Quantitative 
analysis revealed no significant differences in corpus callosum astrogliosis (% area coverage) 
between experimental groups. Data is presented as mean ± SEM. Scale bar = 500 µm (2X) or 
50 µm (20X). IC = insular cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 
= endothelin-1, NI = no injection  
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or right IC, minimal levels of microgliosis within the ipsilateral forceps minor of IA (IA-L 

3.91% ± 1.33%; IA-R 3.62% ± 1.51%) and ET-1 (ET1-L 2.55% ± 0.79%; ET1-R 2.50% ± 

0.85%) groups were observed, compared to PBS (PBS-L 2.55% ± 0.52%; PBS-R 1.99% ± 

0.50%) and NI (1.19% ± 0.32%) control animals (Figure 12A-D). Furthermore, significant 

differences between microglia activation within the contralateral and ipsilateral forceps minor 

of both left (Figure 12C; F(1,38) = 0.01, p = 0.92, two-way ANOVA) and right (Figure 12D; 

F(1,38) = 0.14, p = 0.71, two-way ANOVA) experimental groups were not observed. 

GFAP staining for reactive astrocytes indicated no significant differences in ipsilateral 

forceps minor astrogliosis within left (F(3,38) = 0.89, p = 0.46, two-way ANOVA) and right 

(F(3,38) = 1.06, p = 0.38, two-way ANOVA) experimental groups, with all groups displaying 

similar measurements of GFAP % area coverage: NI (32.62% ± 7.02%), PBS-L (34.23% ± 

4.42%), PBS-R (31.36% ± 4.66%), IA-L (28.44% ± 3.23%), IA-R (28.00% ± 3.43%), ET1-L 

(33.53% ± 3.60%) and ET1-R (25.52% ± 4.87%) (Figure 13A-D). Similar levels of reactive 

astrocytes were also observed within the contralateral forceps minor, revealing no significant 

differences in astrogliosis between the contralateral and ipsilateral forceps minor for both left 

(Figure 13C; F(1,38) = 1.06, p = 0.31, two-way ANOVA) and right (Figure 13D; F(1,38) = 0.16, 

p = 0.69, two-way ANOVA) experimental groups.  

3.3.3 Insular damage enhances white matter microgliosis, but not astrogliosis, in the 

ipsilateral internal capsule 

Additional neuroinflammatory analysis was performed within the internal capsule, a 

subcortical fibre bundle located posteriorly to the injured IC region. Quantification of 

neuroinflammation within this white matter region was of particular interest, as the internal 

capsule comprises the corticobulbar tract; transferring information between the cortex and 

brainstem. With the brainstem home to numerous autonomic cardiovascular centres 2,108,205, a 

neuroinflammatory response within the internal capsule could provide important insight into 

secondary neurodegeneration of autonomic brainstem structures post-insular ischemic stroke. 

Densitometry measurements of % area coverage were quantified as the total fraction of OX-6 

(microglia) or GFAP (astrocytes) immunolabelled cells present within the internal capsule of 

one coronal tissue section. Comparisons of microgliosis or astrogliosis within the contralateral 

and ipsilateral internal capsule were performed to account for unilateral IC damage.  



www.manaraa.com

46 
 

Figure 12. Insular damage does not enhance white matter microgliosis within the forceps 
minor. Representative 2X photomicrographs of OX-6 immunohistochemical stained coronal 
rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 (n=6/experimental 
group) or (B) no injection (n=5) into the right or left insular cortex. Outlined areas represent 
higher-magnified regions (20X) of the ipsilateral forceps minor. (C, D) Quantitative analysis 
revealed no significant differences in contralateral and ipsilateral forceps minor microgliosis 
(% area coverage) within, and between, experimental groups. Data is presented as mean ± 
SEM. Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered 
saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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Figure 13. Insular damage does not enhance white matter astrogliosis within the forceps 
minor. Representative 2X photomicrographs of GFAP immunohistochemical stained coronal 
rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 (n=6/experimental 
group) or (B) no injection (n=5) into the right or left insular cortex. Outlined areas represent 
higher-magnified regions (20X) of the ipsilateral forceps minor. (C, D) Quantitative analysis 
revealed no significant differences in contralateral and ipsilateral forceps minor astrogliosis (% 
area coverage) within, and between, experimental groups. Data is presented as mean ± SEM. 
Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered 
saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection  
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At 28 d post-insular injury, OX-6 staining for activated microglia presented a 

significant effect of injury for both left (F(3,38) = 9.32, p < 0.01, two-way ANOVA) and right 

(F(3,38) = 7.87, p < 0.01, two-way ANOVA) experimental groups. Following damage to the left 

or right IC, enhanced levels of microgliosis within the ipsilateral internal capsule of IA (IA-L 

7.83% ± 1.61%; IA-R 11.55% ± 2.45%) and ET-1 (ET1-L 6.82% ± 1.06%; ET1-R 5.66% ± 

1.61%) groups were observed, compared to PBS (PBS-L 3.61% ± 0.85%; PBS-R 3.75% ± 

1.06%) and NI (2.09% ± 0.46%) control animals (Figure 14A-D). Similar levels of 

microgliosis occurred in the ipsilateral internal capsule of both left and right experimental 

injury groups, indicating no significant effect of insular damage lateralization (F(1,38) = 0.56, p 

= 0.46, two-way ANOVA). Upon completion of Tukey’s multiple comparison test, a 

significant difference in ipsilateral internal capsule microgliosis between NI/IA-L (p < 0.01), 

NI/IA-R (p < 0.01), NI/ET1-L (p = 0.01), PBS-L/IA-L (p = 0.04) and PBS-R/IA-R (p < 0.01) 

groups was confirmed (Figure 14C,D). A significant difference between injured groups 

(IA/ET-1; p = 0.10) or uninjured groups (NI/PBS; p = 0.74) was not observed (Figure 14C,D). 

Furthermore, a significant difference between microglia activation within the ipsilateral and 

contralateral internal capsule was observed for both left (F(1,38) = 9.10, p < 0.01, two-way 

ANOVA) and right (F(1,38) = 6.03, p = 0.02, two-way ANOVA) experimental groups (Figure 

14C,D). While IC damage caused enhanced internal capsule microgliosis both contralaterally 

and ipsilaterally, greater levels of microglia activation were observed within the ipsilateral 

internal capsule of IA-L (ipsilateral = 7.83% ± 1.61%; contralateral = 4.36% ± 1.06%), IA-R 

(ipsilateral = 11.55% ± 2.45%; contralateral = 4.94% ± 1.09%), ET1-L (ipsilateral = 6.82% ± 

1.06%; contralateral = 3.92% ± 0.61%) and ET1-R (ipsilateral = 5.66% ± 1.61%; contralateral 

= 3.80% ± 1.16%) groups (Figure 14C,D). Upon completion of Tukey’s multiple comparison 

test, a significant difference between microgliosis within the contralateral and ipsilateral 

internal capsule of the IA-R group (p = 0.02) was confirmed (Figure 14D).  

GFAP staining for reactive astrocytes indicated no significant differences in ipsilateral 

internal capsule astrogliosis within left (F(3,38) = 1.37, p = 0.27, two-way ANOVA) and right 

(F(3,38) = 0.34, p = 0.80, two-way ANOVA) experimental groups, with all groups displaying 

similar measurements of GFAP % area coverage: NI (29.76% ± 8.26%), PBS-L (29.50% ± 

4.56%), PBS-R (28.59% ± 5.58%), IA-L (24.64% ± 2.15%), IA-R (25.30% ± 2.72%), ET1-L 

(33.53% ± 3.60%) and ET1-R (26.17% ± 5.63%) (Figure 15A-D). Similar levels of reactive 

astrocytes were also observed within the contralateral internal capsule, revealing no significant  
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Figure 14. Insular damage significantly increases white matter microgliosis within the 
ipsilateral internal capsule. Representative 2X photomicrographs of OX-6 
immunohistochemical stained coronal rat brain tissue, 28 d following intracranial injection of 
(A) PBS, IA, ET-1 (n=6/experimental group) or (B) no injection (n=5) into the right or left 
insular cortex. Outlined areas represent higher-magnified regions (20X) of the ipsilateral 
internal capsule. (C, D) Quantitative analysis revealed significant increases in microglia 
activation (% area coverage) within the ipsilateral internal capsule 28 d following insular 
injury. Data is presented as mean ± SEM. Non-matching letters indicate significant differences 
between experimental groups (p < 0.05, two-way ANOVA followed by Tukey’s multiple 
comparison test). Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = 
phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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Figure 15. Insular damage does not enhance white matter astrogliosis within the internal 
capsule. Representative 2X photomicrographs of GFAP immunohistochemical stained coronal 
rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 (n=6/experimental 
group) or (B) no injection (n=5) into the right or left insular cortex. Outlined areas represent 
higher-magnified regions (20X) of the ipsilateral internal capsule. (C, D) Quantitative analysis 
revealed no significant differences in contralateral or ipsilateral internal capsule astrogliosis 
(% area coverage) within, and between, experimental groups. Data is presented as mean ± 
SEM. Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered 
saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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differences in astrogliosis between the contralateral and ipsilateral internal capsule for both left 

(Figure 8C; F(1,38) = 0.34, p = 0.56, two-way ANOVA) and right (Figure 15D; F(1,38) = 0.06, p 

= 0.81, two-way ANOVA) experimental groups.  

3.3.4 Insular damage enhances grey matter microgliosis, but not astrogliosis, in the ipsilateral 

ventroposterior thalamus 

In addition to the aforementioned white matter regions, secondary neuroinflammation 

within the grey matter was examined. Specifically, the investigation of inflammation within 

the VP thalamus was completed, as this region serves as an important relay centre for the 

transmission of cardiac autonomic information between the brainstem and IC 206,207. 

Densitometry measurements of % area coverage were quantified as the total fraction of OX-6 

(microglia) or GFAP (astrocytes) immunolabelled cells present within the VP thalamus of one 

coronal tissue section. Comparisons of microgliosis or astrogliosis within the contralateral and 

ipsilateral VP thalamus were performed to account for unilateral IC damage.   

At 28 d post-insular injury, OX-6 staining for activated microglia presented a 

significant effect of injury for both left (F(3,38) = 11.17, p < 0.01, two-way ANOVA) and right 

(F(3,38) = 19.41, p < 0.01, two-way ANOVA) experimental groups. Following damage to the 

left or right IC, enhanced levels of microgliosis within the ipsilateral VP thalamus of IA (IA-

L 12.55% ± 2.25%; IA-R 11.62% ± 0.70%) and ET-1 (ET1-L 7.30% ± 1.57%; ET1-R 5.40% 

± 1.66%) groups were observed, compared to PBS (PBS-L 2.80% ± 0.81%; PBS-R 2.44% ± 

0.61%) and NI (1.30% ± 0.44%) control animals (Figure 16A-D). Similar levels of 

microgliosis occurred in the ipsilateral VP thalamus of both left and right injury groups, 

indicating no significant effect of insular damage lateralization (F(1,38) = 0.81, p = 0.38, two-

way ANOVA). Upon completion of Tukey’s multiple comparison test, a significant difference 

in ipsilateral VP thalamus microgliosis between NI/IA-L (p < 0.01), NI/IA-R (p < 0.01), 

NI/ET1-L (p = 0.01), NI/ET1-R (p = 0.01), PBS-L/IA-L (p < 0.01), PBS-R/IA-R (p < 0.01), 

IA-L/ET1-L (p = 0.03) and IA-R/ET1-R (p < 0.01) groups was confirmed (Figure 16C,D). A 

significant difference between uninjured control groups (NI/PBS; p = 0.86) was not observed 

(Figure 16C,D). Furthermore, a significant difference between microglia activation within the 

contralateral and ipsilateral VP thalamus was observed for both left (F(1,38) = 41.47, p < 0.01, 

two-way ANOVA) and right (F(1,38) = 52.65, p < 0.01, two-way ANOVA) experimental groups 

(Figure 16C,D). Damage to the left or right IC enhanced microgliosis within the ipsilateral VP  
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Figure 16. Insular damage significantly increases grey matter microgliosis within the 
ipsilateral ventroposterior thalamus. Representative 2X photomicrographs of OX-6 
immunohistochemical stained coronal rat brain tissue, 28 d following intracranial injection of 
(A) PBS, IA, ET-1 (n=6/experimental group) or (B) no injection (n=5) into the right or left 
insular cortex. Outlined areas represent higher-magnified regions (20X) of the ipsilateral 
ventroposterior thalamus. (C, D) Quantitative analysis revealed significant increases in 
microglia activation (% area coverage) within the ipsilateral ventroposterior thalamus 28 d 
following insular injury. Data is presented as mean ± SEM. Non-matching letters indicate 
significant differences between experimental groups (p < 0.05, two-way ANOVA followed by 
Tukey’s multiple comparison test). Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular 
cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no 
injection  
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thalamus, with minimal microglia activation occurring in the contralateral VP thalamus: IA-L 

(ipsilateral = 12.55% ± 2.25%; contralateral = 1.35% ± 0.35%), IA-R (ipsilateral = 11.62% ± 

0.70%; contralateral = 1.50% ± 0.53%), ET1-L (ipsilateral = 7.30% ± 1.57%; contralateral = 

0.75% ± 0.17%) and ET1-R (ipsilateral = 5.40% ± 1.66%; contralateral = 1.13% ± 0.26%) 

(Figure 16C,D). Upon completion of Tukey’s multiple comparison test, a significant difference 

between microgliosis within the contralateral and ipsilateral VP thalamus of IA-L (p < 0.01), 

IA-R (p < 0.01), ET1-L (p < 0.01) and ET1-R (p = 0.01) groups was confirmed (Figure 16C,D).  

GFAP staining for reactive astrocytes indicated no significant differences in ipsilateral 

VP thalamus astrogliosis within left (F(3,38) = 2.20, p = 0.10, two-way ANOVA) and right 

(F(3,38) = 0.72, p = 0.55, two-way ANOVA) experimental groups, with all groups displaying 

similar measurements of GFAP % area coverage: NI (10.42% ± 2.02%), PBS-L (14.79% ± 

2.93%), PBS-R (13.67% ± 3.22%), IA-L (22.42% ± 3.17%), IA-R (14.39% ± 2.48%), ET1-L 

(18.38% ± 3.13%) and ET1-R (16.83% ± 2.12%) (Figure 17A-D). Overall, left and right IC 

damage enhanced astrogliosis within the ipsilateral VP thalamus, when compared to the 

contralateral region (Figure 17C,D). However, significant differences between contralateral 

and ipsilateral astrogliosis were only detected among left experimental injury groups (Figure 

17C; F(1,38) = 12.34, p < 0.01, two-way ANOVA). Upon completion of Tukey’s multiple 

comparison test, no significant differences were confirmed (Figure 17C).  

3.3.5 Insular damage does not generate secondary neuronal loss in remote forebrain regions 

As mentioned previously, chronic inflammation within remote grey and white matter 

regions, post-ischemic injury, has contributed to secondary neurodegeneration in brain regions 

anatomically-connected to the primary ischemic infarct 87–91. We therefore sought to 

investigate the occurrence of neuronal death within the VP thalamus; an identified region in 

our insular ischemic model displaying significant amounts of activated microglia. 

Quantification of neuronal death was also completed for four additional brain regions of IC 

autonomic circuitry: the PFC, ACC, amygdala and hypothalamus. At 28 d post-insular injury, 

secondary neuroinflammation was not observed in these regions. However, neuroinflammatory 

timing and mechanisms can vary depending on the involved structures and their degree of 

axonal connectivity to the primary damaged region 91. It is therefore possible that secondary 

neuroinflammation, and corresponding neurodegeneration, occurred prior to the sacrificed  
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Figure 17. Insular damage does not enhance grey matter astrogliosis within the 
ventroposterior thalamus. Representative 2X photomicrographs of GFAP 
immunohistochemical stained coronal rat brain tissue, 28 d following intracranial injection of 
(A) PBS, IA, ET-1 (n=6/experimental group) or (B) no injection (n=5) into the right or left 
insular cortex. Outlined areas represent higher-magnified regions (20X) of the ipsilateral 
ventroposterior thalamus. (C, D) Quantitative analysis revealed no significant differences in 
contralateral and ipsilateral ventroposterior thalamus astrogliosis (% area coverage) within, 
and between, experimental groups. Data is presented as mean ± SEM. Scale bar = 500 µm (2X) 
or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-
1 = endothelin-1, NI = no injection  
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timepoint of 28 days. Furthermore, with the observed presence of WMI in our model, IC 

connectivity to these regions may be impaired, providing additional justification for the 

analysis of secondary neurodegeneration.  

 To investigate the occurrence of neurodegeneration 28 d following IC injury, brain 

tissue was immunohistochemically stained with NeuN to identify neurons and quantify 

neuronal loss. Automated cell counts of NeuN immunoreactivity were performed to obtain a 

single measurement of NeuN+ cells for each ROI. Comparisons of neurodegeneration within 

the contralateral and ipsilateral area of each ROI were conducted to account for unilateral IC 

damage. 

 At 28 d post-insular injury, evidence of secondary neuronal loss in remote grey matter 

forebrain regions was not observed. Completion of a two-way ANOVA indicated no 

significant effect of left IC injury within the ipsilateral region of all ROIs: PFC (Figure 18A-

C; F(3,38) = 2.49, p = 0.08), ACC (Figure 19A-C; F(3,38) = 0.65, p = 0.59), amygdala (Figure 

20A-C; F(3,38) = 0.19, p = 0.90), hypothalamus (Figure 21A-C; F(3,38) = 0.18, p = 0.91) and VP 

thalamus (Figure 22A-C; F(3,38) = 0.37, p = 0.78). Similar results were obtained upon 

completion of a two-way ANOVA for right experimental groups, with no significant 

differences in total neuron amounts observed within the ipsilateral PFC (Figure 18A,B,D; 

F(3,38) = 0.67, p = 0.58), ACC (Figure 19A,B,D; F(3,38) = 1.13, p = 0.35), amygdala (Figure 

20A,B,D; F(3,38) = 0.38, p = 0.77), hypothalamus (Figure 21A,B,D; F(3,38) = 1.51, p = 0.23) and 

VP thalamus (Figure 22A,B,D; F(3,38) = 2.57, p = 0.78). Additionally, similar measurements of 

neuronal cell counts were observed between the contralateral and ipsilateral PFC (Figure 

18C,D), ACC (Figure 19C,D), amygdala (Figure 20C,D), hypothalamus (Figure 21C,D) and 

VP thalamus (Figure 22C,D) of all experimental groups; insinuating an absence of remote 

neurodegeneration.       

3.4 Analysis of Heart Histology 

3.4.1. Left atrial fibrosis of the heart is observed 28 days following insular injury 

While early rodent models of MCAO have mimicked the clinical appearance of cardiac 

lesions post-ischemic stroke 55,135, specificity of IC damage in relation to SIHI has yet to be 

confirmed. We therefore used our novel rodent model of focal insular ischemic stroke to 

examine, for the first time, the downstream effect of selective IC damage on myocardial health 

and structural integrity. 
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Figure 18. Insular damage does not generate secondary neuronal loss within the 
prefrontal cortex. Representative 2X photomicrographs of NeuN immunohistochemical 
stained coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the ipsilateral prefrontal cortex. (C, D) 
Quantitative analysis revealed no significant differences in prefrontal cortex contralateral and 
ipsilateral neuronal cell numbers within, and between, experimental groups. Cell counts 
represent the number of NeuN+ cells within a 1.50 mm2 region of the prefrontal cortex. Data 
is presented as mean ± SEM. Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, 
PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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Figure 19. Insular damage does not generate secondary neuronal loss within the anterior 
cingulate cortex. Representative 2X photomicrographs of NeuN immunohistochemical 
stained coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the ipsilateral anterior cingulate cortex. (C, 
D) Quantitative analysis revealed no significant differences in anterior cingulate cortex 
contralateral and ipsilateral neuronal cell numbers within, and between, experimental groups. 
Cell counts represent the number of NeuN+ cells within a 1.04 mm2 region of the anterior 
cingulate cortex. Data is presented as mean ± SEM. Scale bar = 500 µm (2X) or 50 µm (20X). 
IC = insular cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-
1, NI = no injection  
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Figure 20. Insular damage does not generate secondary neuronal loss within the 
amygdala. Representative 2X photomicrographs of NeuN immunohistochemical stained 
coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the ipsilateral amygdala. (C, D) Quantitative 
analysis revealed no significant differences in amygdala contralateral and ipsilateral neuronal 
cell numbers within, and between, experimental groups. Cell counts represent the number of 
NeuN+ cells within a 0.58 mm2 region of the amygdala. Data is presented as mean ± SEM. 
Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered 
saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
 

  



www.manaraa.com

59 
 

Figure 21. Insular damage does not generate secondary neuronal loss within the 
hypothalamus. Representative 2X photomicrographs of NeuN immunohistochemical stained 
coronal rat brain tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 
(n=6/experimental group) or (B) no injection (n=5) into the right or left insular cortex. Outlined 
areas represent higher-magnified regions (20X) of the ipsilateral hypothalamus. (C, D) 
Quantitative analysis revealed no significant differences in hypothalamus contralateral and 
ipsilateral neuronal cell numbers within, and between, experimental groups. Cell counts 
represent the number of NeuN+ cells within a 0.58 mm2 region of the hypothalamus. Data is 
presented as mean ± SEM. Scale bar = 500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS 
= phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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Figure 22. Insular damage does not generate secondary neuronal loss within the 
ventroposterior thalamus. Representative 2X photomicrographs of NeuN 
immunohistochemical stained coronal rat brain tissue, 28 d following intracranial injection of 
(A) PBS, IA, ET-1 (n=6/experimental group) or (B) no injection (n=5) into the right or left 
insular cortex. Outlined areas represent higher-magnified regions (20X) of the ipsilateral 
ventroposterior thalamus. (C, D) Quantitative analysis revealed no significant differences in 
ventroposterior thalamus contralateral and ipsilateral neuronal cell numbers within, and 
between, experimental groups. Cell counts represent the number of NeuN+ cells within a 0.58 
mm2 region of the ventroposterior thalamus. Data is presented as mean ± SEM. Scale bar = 
500 µm (2X) or 50 µm (20X). IC = insular cortex, PBS = phosphate-buffered saline, IA = 
ibotenic acid, ET-1 = endothelin-1, NI = no injection 
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Specifically, cardiac tissue was histologically stained with Masson’s trichrome to 

identify fibrotic regions. Tissue stained blue represented extensive collagen deposition, 

indicating the presence of interstitial fibrosis. For this thesis, fibrosis of the LA was analyzed; 

due to the known contribution of LA dysfunction in AF 208,209, and the high clinical prevalence 

of AF associated with SIHI 102. Percent area coverage of LA cardiac fibrosis was quantified as 

the averaged total fraction of blue-stained tissue present within the LA of eight randomly-

selected coronal tissue sections.  

At 28 d post-insular damage, a significant effect of injury was observed (F(3,38) = 14.53, 

p < 0.01, two-way ANOVA). Left IC damage resulted in enhanced LA fibrosis in IA (6.29% 

± 1.62%) and ET-1 (4.49% ± 1.25%) injury groups, compared to PBS (0.79% ± 0.15%) and 

NI (0.53% ± 0.09%) control animals (Figure 23A-C). Increased LA fibrosis was also observed 

following injection of IA (3.04% ± 0.55%) or ET-1 (5.34% ± 0.86%) into the right IC (Figure 

23A,C), indicating no significant effect of insular damage lateralization (F(1,38) = 0.85, p = 0.36, 

two-way ANOVA). Rats subjected to injection of PBS into the right IC displayed minimal 

fibrotic levels (0.87% ± 0.14%), similar to PBS-L control animals (Figure 23A,C). Upon 

completion of Tukey’s multiple comparison test, a significant difference in LA fibrosis 

between NI/IA-L (p < 0.01), NI/ET1-R (p = 0.01), PBS-L/IA-L (p < 0.01) and PBS-R/ET1-R 

(p = 0.01) groups was confirmed (Figure 23C). A significant difference between injured groups 

(IA/ET-1; p = 0.99) or uninjured groups (NI/PBS; p = 1.00) was not observed (Figure 23C).       

3.5 Correlative Analysis of Microglia Activation and Cardiac Fibrosis 

3.5.1 Increased white and grey matter microglia activation positively correlates with left atrial 

cardiac fibrosis   

Using our novel rodent model of focal insular ischemic stroke, we have identified the 

presence of both (1) secondary white and grey matter microgliosis and (2) LA cardiac fibrosis, 

28 d following IC injury. Interestingly, recent studies have hypothesized a causative role of 

inflammation in the genesis and perpetuation of myocardial fibrotic remodelling 
114,187,188,210,211. We therefore sought to examine the relationship between remote cerebral 

inflammation and cardiac fibrosis; correlating levels of activated microglia within the 

ipsilateral forceps minor, corpus callosum, ipsilateral internal capsule or ipsilateral VP 

thalamus, to LA fibrosis. Only rats subjected to ischemic injury (ET-1) and saline control 
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Figure 23. Left atrial fibrosis of the heart significantly increases following injury to the 
insular cortex. Representative 10X photomicrographs of Masson’s trichrome stained coronal 
heart tissue, 28 d following intracranial injection of (A) PBS, IA, ET-1 (n=6/experimental 
group) or (B) no injection (n=5) into the right or left insular cortex. Tissue stained blue 
identifies collagen, indicating fibrosis. (C) Quantitative analysis revealed significant increases 
in left atrial fibrosis (% area coverage) 28 d following insular injury. Data is presented as mean 
± SEM. Non-matching letters indicate significant differences between experimental groups (p 
< 0.05, two-way ANOVA followed by Tukey’s multiple comparison test). Scale bar = 250 µm. 
IC = insular cortex, PBS = phosphate-buffered saline, IA = ibotenic acid, ET-1 = endothelin-
1, NI = no injection  
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animals (PBS) were included in this correlative analysis.  

 At 28 d post-insular ischemic stroke, increased levels of activated microglia 

significantly correlated with enhanced LA fibrosis in the ipsilateral forceps minor (Figure 24A; 

F(1,18) = 6.06, p = 0.02), corpus callosum (Figure 24B; F(1,18) = 22.91, p < 0.01), ipsilateral 

internal capsule (Figure 24C; F(1,18) = 29.38, p < 0.01) and ipsilateral VP thalamus (Figure 

24D; F(1,18) = 19.40, p < 0.01). While all four regions displayed a strong positive correlation, 

the strongest relationship was observed within brain regions proximal to the infarct site (corpus 

callosum: r = 0.75; internal capsule: r = 0.79 and VP thalamus: r = 0.72); compared to the 

more distal forceps minor (r = 0.50) (Figure 24A-D). Upon observation of this positive 

relationship, linear regression analysis was completed to establish regression lines for each 

data set (Figure 24A-D); identifying the overall influence of microglia activation (variable x) 

on LA fibrosis (variable y). It is important to note that although these results depict a strong 

linear relationship between microgliosis and cardiac fibrosis, the observed association remains 

correlative – not causative. As such, a causative implication of neuroinflammation in SIHI can 

not yet be discerned.    
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Figure 24. Increased white and grey matter microglia activation positively correlates with 
left atrial cardiac fibrosis. Correlative depiction of the significant positive association 
between number of activated microglia within the (A) ipsilateral forceps minor (p = 0.02), (B) 
corpus callosum (p < 0.01), (C) ipsilateral internal capsule (p < 0.01) or (D) ipsilateral 
ventroposterior thalamus (p < 0.01), and extent of left atrial cardiac fibrosis 28 d following 
intracranial injection of PBS (grey dots; n=10) or ET-1 (purple dots; n=10) into the left or right 
insular cortex. Significance analyzed using the simple linear regression model (p < 0.05). 
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4.1 Summary of Key Findings 

 Completion of this thesis was performed with the overall intent of establishing a novel 

experimental model of focal ischemic stroke in the rat IC, used to further elucidate the 

mechanistic relationship between IC ischemia and SIHI. In doing so, we confirmed, for the 

first time, the selective role of IC damage in generating SIHI; reaffirming clinical observations. 

To date, experimental studies of SIHI have exclusively involved animal models of MCAO 
55,135. Yet, due to the invasiveness and severity of this procedure 186, observations of SIHI have 

been limited to acute timepoints 55,135. In the present study, use of ET-1 produced a focal, and 

much less severe, ischemic infarct. As such, we were able to first identify the chronic display 

of stroke-induced cardiac fibrosis. At 28 d following IC damage, regions of secondary 

microgliosis were located within the corpus callosum, ipsilateral internal capsule and 

ipsilateral VP thalamus; a known consequence of ischemic stroke. Due to the recent 

implication of inflammation in the manifestation of myocardial fibrotic remodelling 
114,187,188,210,211, microgliosis in these remote regions was correlated to cardiac fibrosis; 

demonstrating, for the first time, a positive association between these two physiological 

variables. Lastly, development of this rodent model allowed for the implementation of a 

behaviour test, used to indirectly assess autonomic deficits of IC damage. Specifically, PPI of 

the ASR was analyzed, suggesting a lateralizing trend of left IC dominance in sensorimotor 

gating. Overall, with the successful development of this insular stroke model, we have begun 

to unravel several pathophysiological outcomes of SIHI; vitally improving current mechanistic 

knowledge of this complex brain-heart connection.                   

4.2 Endothelin-1 vs. Ibotenic Acid 

ET-1 is a potent vasoconstrictor, used in this study to induce insular ischemic stroke 57–

59,191,192. Historically, ET-1 has been recognized as a translational stroke method, best 

representing human ischemic conditions 191. However, resulting ischemia caused by this 

technique will injure all structures located at the injection site; including intersecting white 

matter fibers 190,193. Mechanistically, this makes it difficult to conclude whether reported 

behavioural and pathological outcomes are a direct effect of the targeted damage, or an indirect 

effect of non-specific white matter injury. To overcome this confounding dilemma, the 

neurotoxin IA was included as an additional positive control, causing selective neuronal death 

within the IC 193,194. IA acts as a glutamate agonist, capable of binding to the NMDA glutamate 
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receptor, an important regulator of Ca2+ transport 212. Upon administration of IA into the IC, 

neuronal membrane NMDA receptors become activated, prompting the influx of  extracellular 

Ca2+ into IC neurons 212,213. Similar to ischemic stroke 44, the intracellular accumulation of Ca2+ 

will evoke an excitotoxic cascade, causing neuronal cell death 212,213. In this study, equivalent 

results were obtained following the injection of IA or ET-1 into the rat IC. We can therefore 

conclude that the acquired behavioural and pathological findings of this thesis are a direct result 

of ischemic IC injury, and corresponding physiological processes – not the unspecific damage 

of a traversing white matter tract.      

4.3 Behavioural Assessment: Prepulse Inhibition of the Acoustic Startle Response 

In creating this rodent model of focal insular ischemic stroke, PPI of the ASR was 

performed as an accompanying behaviour test. Traditionally, PPI has served as a reliable 

measure of sensorimotor gating 139,160,161; an autonomic process responsible for the filtration 

of unnecessary or redundant external stimuli 160–162. To our knowledge, a direct relationship 

between the IC and PPI has not yet been reported. However, due to the known autonomic role 

of sensorimotor gating in the regulation of sensory input filtration 160–162, we used PPI of the 

ASR to indirectly measure autonomic outcomes of IC injury. Physiologically, the successful 

implementation of this behaviour test could provide crucial insight into the lateralization of IC 

autonomic function; a current topic bound by contradicting results.  

In 1992, Hachinski and colleagues identified an increased prevalence of severe 

sympathetic consequences following occlusion of the right MCA in the rat 135, suggesting a 

parasympathetic dominance of right IC function. Corresponding with this right MCA territorial 

damage, was the observed elevation of plasma catecholamines (specifically NE); likely caused 

by sympathetic activation of the noradrenergic system 135. Interestingly, Saitoh and colleagues 

have previously reported a noradrenergic influence on PPI, observing deficits in sensorimotor 

gating following blockage of this hormonal system 177. We therefore expected left IC injury to 

impair PPI, reducing attenuation of the ASR. Theoretically, if the left IC truly embodies a 

sympathetic dominance of autonomic function, resulting damage would disrupt sympathetic 

control and inhibit noradrenergic activation; ultimately impeding normal sensorimotor gating.  

At 28 d following IC injury, damage to the left IC caused a notable trend of reduced 

PPI, compared to right injury groups (IA/ET-1) and control groups (PBS/NI); supporting the 

potential lateralization of IC autonomic function. As part of this behaviour test, rats were 
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subjected to assorted prepulse trials, varying in intensity (75 dB and 85 dB) and ISI (30 ms and 

100 ms). Mediation of PPI primarily occurs through a fast-acting brainstem circuit 163. 

Although, several studies have also identified the advanced processing of prepulse stimuli at 

the forebrain level; capable of exerting a delayed, downstream modulatory effect on PPI 
139,145,214,215. For this reason, PPI is traditionally measured using two ISIs: one of short duration 

(30 ms) and one of long duration (100 ms), to assess experimental alterations in brainstem or 

forebrain circuitry 184. Intriguingly, while prepulse trials of both ISIs demonstrated a trending 

decrease in PPI for left injury groups (IA/ET-1), observed deficits were most substantial 

following administration of a 75 dB prepulse with 30 ms ISI. As such, our impaired 

observations of PPI are likely the result of autonomic brainstem damage and/or dysfunction, 

caused by the downstream effects of left IC injury. However, before such conclusions can be 

drawn, it is important to recall that PPI of the ASR has traditionally been used to assess deficits 

in sensory processing 160–162. Consequently, this observed trend of reduced PPI following left 

IC damage could very-well be attributed to the impairment of normal sensory gating processes, 

unrelated to autonomic dysfunction – requiring the future implementation of alternative 

metrics capable of directly evaluating autonomic changes post-insular ischemic stroke. 

4.4 Insular Ischemic Stroke and Secondary Neuroinflammation 

4.4.1 White matter inflammation and axonal degeneration 

Following ischemic stroke, clinical imaging studies have identified chronic 

inflammation in major white matter tracts, persisting several months into the recovery period 
68–71. Recently, manifestation of this WMI has been implicated in post-stroke prognosis, 

contributing to worse functional outcomes 68,72,73. Physiologically, white matter is essential for 

proper signal transduction between grey matter regions 66,74. For this transmission to efficiently 

occur, a persistent supply of energy is required along the full axon 66. Consequently, damage 

to one area, which may arise during ischemia, can destroy the electrophysiological properties 

of the entire axon; causing axonal degeneration 66,71. Overtime, propagation of this axonal 

damage will inhibit neuronal communication, resulting in adverse functional deficits 66,68,72,73. 

We therefore sought to identify remote areas of secondary neuroinflammation in our insular 

ischemic stroke rodent model. Observed damage in distal white and grey matter regions could 

provide valuable mechanistic insight into the neural manifestation of autonomic dysfunction, 

and resulting SIHI, following IC ischemia.    
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 As anticipated, remote areas of neuroinflammation were identified 28 d following IC 

damage, appearing in both white and grey matter regions. In particular, enhanced microglia 

activation occurred in the corpus callosum, ipsilateral internal capsule and ipsilateral VP 

thalamus of injured groups (IA/ET-1). While minimal amounts of microgliosis were also 

observed within the forceps minor, a significant difference between experimental groups was 

not identified; likely due to the anatomical distance between its anterior location and our (more 

posterior) IC injection site. In this thesis, neuroinflammation was selected as a primary 

histological correlate, to allow for the broader observation of insular stroke-induced 

pathological changes.  

Mechanistically, WMI does not serve as a direct correlate of axonal degeneration. 

However, past experimental reports have discerned microgliosis as a reputable assay for axonal 

health 65,92,216. Recently, Wang and colleagues positively correlated axonal degeneration to M1 

microglia activation, in the corpus callosum of mice subjected to traumatic brain injury 65. 

Physiologically, this makes sense; considering the degradation of axons, or any cellular 

component, is naturally accompanied by an accumulation of toxic waste, stimulating activation 

of a neuroinflammatory response. Thus, the co-occurrence of both axonal degeneration and 

WMI, post-ischemic stroke, is pathologically plausible. We can therefore infer that our 

observations of corpus callosum and internal capsule microgliosis correspond with the chronic 

degeneration of local axons. This associated white matter injury can disrupt signal 

transduction, ultimately leading to the neurodegeneration of remote grey matter regions 90,92.         

Pathologically, the neurodegenerative presentation of this distal grey matter damage is 

anticipated to elicit a chronic, secondary cascade of remote neuroinflammation. In our current 

rat model, significant amounts of activated microglia were identified within the ipsilateral VP 

thalamus 28 d following IC damage; further supporting our mechanistic speculation of white 

matter axonal degeneration. Intriguingly, the VP thalamus serves as a vital relay centre for the 

transmission of autonomic cardiovascular information between the brainstem and IC 108. As 

such, the downstream manifestation of neurodegeneration within this brain region, likely 

contributes to associated autonomic deficits of SIHI. Additional staining for histological 

markers specific to degeneration, such as Fluoro-Jade B 91,217, should be performed to confirm 

this mechanistic prediction of secondary degeneration.     
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4.4.2 Additional causes of microglia activation  

 In addition to the injured groups (IA/ET-1), basal levels of microgliosis were observed 

in our NI rats; insinuating an innate presence of microgliosis. Often, microglia are exclusively 

viewed as immune cells of the brain. However, these multifunctional cells participate in an 

array of physiological processes, regulating homeostasis and maintaining overall brain health 
218. During the absence of an immune response, microglia will continue to scavenge the CNS: 

phagocytosing aged cells, faulty synapses and/or local waste products 218. Consequently, this 

internal cleanup of cellular debris requires the basal activation of M1 microglia; likely 

contributing to the observed presence of microgliosis within our NI rats. 

4.4.3 Pathological absence of lateralization 

 As discussed earlier, behavioural measurements of PPI displayed recognizable 

differences between left and right insular injury groups, suggesting a lateralization of IC 

autonomic function. Consequently, a pathological lateralization of neuroinflammation, 

corresponding with this behavioural observation, was anticipated. Yet, at 28 d following IC 

damage, similar regions (and amounts) of microgliosis were observed in all injured groups; 

despite hemispheric location of the insular injury. Intriguingly, Krause and colleagues recently 

identified a co-existence of both sympathetic and parasympathetic regions in the left and right 

human IC 130. Although each hemisphere appears to exhibit a functional autonomic 

predominance (right IC = parasympathetic, left IC = sympathetic), opposing autonomic 

regions, in each IC, have been observed 130 – blurring the perceived rigidness of IC 

lateralization. Experimentally, similar observations of this autonomic variation have been 

recognized among cardiac chronotropic sites within the rat IC 219. It is therefore possible that 

damage to the right or left IC may impact both sympathetic and parasympathetic regulatory 

sites, negating distinct downstream pathological effects; however, due to the autonomic 

predominance of each hemisphere, a lateralization of behavioural deficits was still detected.  

 Furthermore, the results of this thesis only assess secondary neuroinflammation within 

remote forebrain regions; limiting current pathological conclusions. The IC is vital to the 

autonomic control of cardiovascular function, transmitting this regulatory effect on the heart 

through several brainstem regions 108–110. Neurologically, the anatomical separation of 

sympathetic and parasympathetic pathways involved with this autonomic process remains 

most apparent within the brainstem. From the IC, efferent sympathetic output predominantly 
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synapses at the RVLM, while parasympathetic outputs synapse at the DMV and/or NA; both 

located within the medulla 2. As such, the pathological representation of IC lateralization may 

be more discernable within the brainstem medulla. Interestingly, in our current rodent model, 

injured rats (IA/ET-1) exhibited significant amounts of microgliosis within the ipsilateral 

internal capsule; a fibre bundle responsible for signal transduction between the cortex and 

brainstem. Consequently, chronic display of this internal capsule microgliosis likely 

corresponds with a downstream manifestation of brainstem damage, supporting the crucial 

need for additional investigation of resulting brainstem pathology.              

4.4.4 Insular ischemic stroke and astrogliosis 

 At 28 d post-insular injury, no significant differences in astrogliosis were identified 

between experimental groups; corresponding with previous results obtained in our lab. 

Traditionally, astrocytes have been implicated as key regulators of neuroinflammation. During 

stroke, observations of acute astrogliosis remain constant, as astrocytes function to encapsulate 

the damaged region; initiating vital repair mechanisms 61,62. Presently, the specific involvement 

of astrogliosis in chronic, stroke-induced secondary neuroinflammation, remains unknown. 

Pathologically, astrogliosis has been associated with several CNS diseases 220–222. However, 

given the different origins and onsets of these injuries, the temporal and spatial changes of 

reactive astrocytes have been known to vary, depending on the disease 221. It is therefore 

possible that while acute ischemic neuroinflammatory mechanisms predominately involve 

astrogliosis, chronic secondary neuroinflammation, particularly within the white matter, 

evokes alternative neuroinflammatory responses; primarily involving microglia.     

4.5 Insular Ischemic Stroke and Remote Neurodegeneration 

In our current rodent model, increased M1 microglia activation was observed in white 

matter tracts 28 d following IC damage, displaying a chronic manifestation of white matter 

injury. As mentioned previously, past experimental studies have identified WMI as a suitable 

assay for axonal health; recognizing WMI as a histological correlate of axonal degeneration 92. 

In accordance with these claims, our current observations of enhanced microglia activation 

(WMI) within the corpus callosum and internal capsule of injured rats (IA/ET-1), would 

insinuate a co-occurrence of chronic axonal damage. 
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 Clinically, the pathological display of post-stroke white matter injury has become of 

increased concern, largely due to the suspected role of axonal damage in secondary 

neurodegeneration 92; an adverse outcome of stroke involving remote brain regions distal to 

the infarct zone 80–85. Presently, the exact mechanisms of this delayed remote pathology are 

unknown, and may vary depending on the affected structures 91. Yet, an intriguing 

commonality exists between all cases of stroke-induced secondary neurodegeneration: location 

of the remote damage is dependent on anatomical connectivity to the primary infarct 87–91, 

supporting the likely involvement of  white matter injury 92. Consequently, in observing WMI 

after IC damage, a chronic display of remote secondary neurodegeneration was expected in 

our injured rats (IA/ET-1). To affirm this anticipated outcome, total neuron counts were 

measured in five forebrain regions anatomically connected to the IC: the PFC, ACC, amygdala, 

hypothalamus and VP thalamus. Each of these areas were specifically chosen, due to their 

autonomic involvement with IC regulation of cardiovascular function. Neurodegeneration in 

any of these regions would provide valuable insight into the pathological manifestation of 

autonomic dysfunction, and associated SIHI.  

To our surprise, neuronal loss was not observed in any of the aforementioned forebrain 

regions at 28 d post-insular injury, contradicting previous experimental findings. Past studies 

involving MCAO in the rat, have consistently reported a delayed appearance of secondary 

neurodegeneration in the thalamus 87,88,90,92. Adding to this, in a recent study by Weishaupt and 

colleagues, chronic neurodegeneration and neuron cell death were observed in the retrosplenial 

cortex of the rat 28 d following the bilateral injection of ET-1 into the PFC 91. Consistently, 

this data has confirmed the experimental existence of stroke-induced secondary 

neurodegeneration, strongly opposing the results of our study. However, when analyzing this 

prior data, it became evident that our study produced a substantially smaller infarct region; 

suggesting a mechanistic impact of stroke severity on the initiation and/or perpetuation of 

remote neurodegeneration. In our current model, limiting the infarct size was considered 

necessary to produce a well-defined IC stroke, while the creation of a unilateral lesion allowed 

for the evaluation of IC lateralization. Yet, it is possible that this unilateral infarct of small 

volume may not be severe enough to produce previously described incidents of secondary 

neurodegeneration, requiring a bilateral or larger site of damage.    

To our knowledge, the correlative influence of stroke severity in remote 

neurodegeneration has yet to be investigated. However, Iizuka and colleagues have reported 
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an enhanced prominence of terminal degeneration, within the corticothalamic fibers of rats 

exhibiting a larger MCAO infarct 87; supporting this proposed mechanistic interaction. 

Recently, Weishaupt and colleagues published comparable findings to those outlined in this 

thesis, discerning an absence of secondary neurodegeneration 28 d post-ischemic stroke 217. 

Similar to our study, this experiment produced a small infarct region, injecting 1 µL of ET-1 

(10 pmol/µL), unilaterally, into the dorsomedial thalamus of the rat 217. Interestingly, while 

axonal degeneration occurred within connecting thalamocortical fibres, an accompanied 

presence of secondary degeneration in remote grey matter regions was not observed 217; 

reaffirming our results. 

In discussing this relationship of ischemic stroke and remote neurodegeneration, it is 

important to note that increased M1 microglia activation was identified in the ipsilateral VP 

thalamus of our injured rats (IA/ET-1), without the accompanying manifestation of neuronal 

loss. It is therefore possible that, although the implied presence of axonal degeneration did not 

correspond with the anticipated secondary neurodegeneration of remote brain regions; damage 

to these white matter tracts parallels a chronic disruption of signal transduction. Secondary 

activation of M1 microglia may necessitate pruning of faulty synapses, located in remote areas 

like the VP thalamus, damaged as a result of this impaired axon function 218.  

4.6 Insular Ischemic Stroke and Stroke-Induced Heart Injury 

In 1989, Cechetto and colleagues were first to experimentally investigate ischemic 

SIHI, recapitulating clinical observations of myocardial damage and dysfunction in a rodent 

model of MCAO 55. Within this study, histological analysis of collected brain tissue revealed 

an invariable inclusion of IC damage within the MCA ischemic zone 55. In seeing this, Cechetto 

proposed a mechanistic influence of IC damage in SIHI, based upon the known role of IC 

regulation in cardiovascular function. To date, various clinical and epidemiological studies 

have discerned an association between IC damage and SIHI 7,124–127; supporting Cechetto’s 

hypothesis. Most recently, Gonzalez Toledo and colleagues identified IC damage in 30.4% of 

ischemic stroke patients exhibiting atypical post-stroke ECGs; compared to a 7.3% prevalence 

in patients with normal post-stroke cardiac function 7. As such, it was anticipated that the focal 

induction of IC damage would evoke structural myocardial changes in our novel rodent model 

of insular ischemic stroke. 
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 At 28 d following IC injury, interstitial cardiac fibrosis was observed in the LA. To our 

knowledge, this is the first reported observation of stroke-induced cardiac fibrosis; as previous 

studies of SIHI have involved more acute timepoints 55,94,95,97,98,135,136. During these prior 

experiments, the structural manifestation of contraction band necrosis has consistently served 

as a histological marker of myocardial cell death 2,93,105, occurring within minutes of the 

hemorrhagic or ischemic stroke 223,224. Intriguingly, this pathology distinctly differs from 

common observations of coagulative necrosis, seen after myocardial ischemia 225; further 

supporting a mechanistic variance between traditional heart disease and SIHI. Currently, 

overactivation of the SNS, and accompanying NE toxicity, have been implicated as the cause 

of contraction band necrosis 113,226,227. Physiologically, NE is required for the regulated 

opening of myocardial Ca2+ channels, responsible for cardiac muscle contraction 113.  If 

prolonged, oversaturation of NE will stimulate cardiac muscle hypercontractivity, causing 

irreversible cell death (contraction band necrosis) 2,93. Overtime, this damaged myocardial 

tissue will begin to remodel, likely giving rise to our chronic observations of cardiac fibrosis. 

 In this thesis, fibrosis of the LA was specifically analyzed, due to the contributing role 

of LA dysfunction in AF 208,209. AF is a form of cardiac arrythmia known to increase the risk 

of stroke 5-fold 15; currently recognized as the most prevalent arrhythmia of SIHI 102. 

Clinically, these stroke-induced cases of AF have been described as brief and acute arrhythmic 

episodes, associated with a low recurrence of ischemic stroke 228,229. However, with our recent 

observations of cardiac fibrosis, a chronic development of AF, capable of more drastic 

consequences, is certainly plausible. This local infiltration of fibrotic tissue can structurally 

disrupt the subendocardium, altering the cardiac conduction system; contributing to the 

generation of persistent AF 105. Presently, it remains unknown whether the fibrotic changes 

observed in our study are severe enough to cause AF, having only been observed in 

approximately 5% of total LA area. Yet, in a clinical report by Hammermeister and 

Reichenbach, minor foci of myocytolysis were deemed capable of initiating ECG 

abnormalities 230; suggesting that less obvious cardiac lesions, like those detected in this study, 

may be sufficient in producing detrimental changes to cardiac function. Experiments within 

our lab are currently ongoing to assess the temporal progression of this fibrotic remodelling.    

Similar to observed brain pathology, the hemispheric localization of IC damage did not 

alter histological results; producing similar amounts of LA cardiac fibrosis after left or right 

insular injury. Anatomically, the LA is surrounded by four pulmonary veins (PV), which 
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together, form the PV-LA junction; a heavily innervated autonomic area, densely populated by 

both adrenergic (SNS) and cholinergic (PSNS) nerves 231. Intriguingly, these autonomic nerves 

appear co-localized at both the tissue and cellular level, with a significant proportion (30%) of 

cardiac ganglion cells displaying dual adrenocholinergic phenotypes 231. As such, with this 

lack of discrete PV-LA autonomic nerve predominance, an identical pathological display 

would be expected; regardless the type of autonomic disturbance (sympathetic or 

parasympathetic).      

4.7 Inflammation and Stroke-Induced Heart Injury   

 The contribution of inflammation to the genesis and perpetuation of SIHI has gained 

increased interest. As mentioned previously, neuroinflammation is a natural consequence of 

ischemic stroke, known to disrupt the BBB 37,64,66. Pathologically, this damage to the BBB 

enables the release of local neuroinflammatory cytokines (TNFα, IL-1β) into the periphery; 

inducing a systemic inflammatory response 37,66. Intriguingly, persistent systemic 

inflammation has been adversely linked to heart disease 187,188, as observed in chronic 

inflammatory disease (sepsis, rheumatoid arthritis) patients 232–234. We therefore sought to 

further explore the mechanistic influence of inflammation on SIHI, by correlating cerebral 

inflammation to cardiac fibrosis.  

As expected, increased microglia activation (neuroinflammation) correlated with the 

enhanced presence of LA cardiac fibrosis; likely elicited through neuroinflammatory activation 

of the systemic immune response. In the heart, including other internal organs, chronic 

exposure to systemic inflammation can impair mitochondria function, resulting in the 

unnatural accumulation of ROS 235,236. Inevitably, this elicits a cascade of oxidative damage, 

generating a local inflammatory response 235,236. Interestingly, in the recent clinical study by 

Westermann and colleagues, increased amounts of cardiac inflammatory cells positively 

correlated with enhanced cardiac fibrosis and dysfunction, in heart failure patients 237; 

validating aforementioned mechanistic predictions. Currently, ongoing studies within our lab 

are actively analyzing the local infiltration of immune cells (neutrophils, lymphocytes and 

monocytes) into cardiac tissue, following IC injury. The future correlation of these results to 

neuroinflammation and cardiac fibrosis, as well as the systemic measurement of 

proinflammatory cytokines, are crucial in elucidating the pathophysiological impact of 

inflammation on SIHI.       
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Presently, it remains unclear whether this ischemic mechanism of inflammation is 

independently capable of eliciting SIHI. Recently, Olshansky hypothesized a regulatory role 

of the ANS in myocardial cytokine production; outlining parasympathetic involvement in the 

attenuation of cardiac inflammation 114. Furthermore, overstimulation of the SNS has been 

implicated in the activation of a systemic, proinflammatory response 238 – insinuating an 

autonomic influence over associated observations of inflammation post-insular injury. It is 

therefore possible that, following stroke, ischemic-induced systemic inflammation perturbs 

cardiac tissue, evoking the infiltration of inflammatory cells into the heart. Subsequently, 

damage to the IC decreases parasympathetic tone, hindering the suppression of unwanted 

inflammation. This, coupled with chronic exposure to SNS-induced systemic inflammation, 

further exacerbates local cardiac inflammation; contributing to the observed presence of 

cardiac fibrosis. In our current model, the ischemic induction of insular stroke presumably 

causes both systemic inflammation (a direct result of the stroke) and autonomic dysfunction (a 

direct result of IC damage); making it challenging to confirm an independent effect of 

inflammation in SIHI. As such, future studies involving an alternative stroke location should 

be performed, to examine whether stroke in this alternate region, not anatomically connected 

to the IC, can produce similar levels of cardiac fibrosis as those produced in our current model.     

4.8 Limitations and Future Directions 

To date, the clinical investigation of SIHI has been challenging, due to the high 

prevalence of shared risk factors between ischemic stroke and cardiovascular disorders 2,105. 

As such, we sought to establish a rodent model of focal insular ischemic stroke; capable of 

progressing the pathophysiological understanding of SIHI, while simultaneously eliminating 

these clinically-inevitable confounding variables. Experimental development of this novel 

model has provided valuable insight into the neurological mechanisms of SIHI, confirming the 

isolated involvement of IC stroke in the development of structural cardiac damage. However, 

it is important to note that inception of this current rodent model does not exist without 

limitations; many of which can be resolved in future studies. 

Physiologically, substantial differences exist between males and females, contributing 

to sex-specific alterations in the pathophysiological manifestation, progression and recovery 

of illness and disease 239. In stroke, current epidemiological data has delineated an increased 

incidence in men, compared to women 240–242. Yet, women frequently present with more severe 
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outcomes; linked to adverse mortality rates 240–242. To our knowledge, sex-related differences 

in the underlying pathophysiology of SIHI have yet to be investigated, both clinically and 

experimentally. Unfortunately, current results presented in this study do not address this 

important, and often overlooked, phenomenon – having only used male rats. As such, future 

experimental studies of SIHI should incorporate the use of female rodents, to examine the 

likely effect of sex-specific differences involved in the mechanistic formation and perpetuation 

of stroke-induced cardiac dysfunction.                

In the present study, behavioural and pathological observations of IC damage were 

restricted to the single timepoint of 28 d post-insular injury. However, it is possible that the 

recovery of an acute pathological response may have already occurred prior to this chronic 

period, resulting in the loss of key mechanistic information. Recently, Sposato and colleagues 

reported an acute manifestation of stroke-induced cardiac arrhythmias, of which the majority 

(approximately 75%) occurred within the first three days of stroke onset 229. Additionally, 20-

60% of ischemic stroke patients exhibit an acute elevation in serum cTnT, a known biomarker 

of myocardial injury 104. Interestingly, in a recent study by Wrigley and colleagues, this 

increased presence of cTnT appeared to enhance the long-term risk for death after ischemic 

stroke 104; implying the capable manifestation of acute SIHI into chronic, deadly outcomes. It 

is therefore critical to include acute timepoints in future studies, as these early 

pathophysiological changes may provide advanced mechanistic insight into the chronic 

observations of SIHI detected in our current model.          

 Pathologically, results from this study do not take into consideration the potential 

impact of infarct size on SIHI, or its underlying mechanisms. Yet, clinically, an association 

between infarct volume and SIHI has been identified 229. In a recent study by Sposato and 

colleagues, 80% of patients diagnosed with stroke-induced AF displayed a large infarct volume 

(>15 mm), recognizing infarct size as a predictor of SIHI 229. Based upon these results, Sposato 

hypothesized that larger infarcts are associated with more severe autonomic dysregulation, 

contributing to adverse outcomes of SIHI 229. However, this has yet to be experimentally 

proven. Future comparisons of SIHI outcomes using the current rodent model, and a MCAO 

model, could enhance experimental understanding of this proposed mechanistic risk factor.      

Lastly, in this newly developed model of focal insular ischemic stroke, a direct 

assessment of cardiovascular autonomic function is absent; presenting an inherent mechanistic 

limitation. Traditionally, HRV has served as a well-established tool used to assess cardiac 
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autonomic control, in both humans and animal models 136,243,244. In the conscious rat, this 

requires the surgical implantation of a telemetric device 245. Due to the high costs associated 

with animal telemetry, initial establishment of the present model was essential to confirm 

proof-of-concept. As a next step, future studies should incorporate the use of telemetry into 

this current insular stroke model. Analysis of HRV can verify the mechanistic role of 

autonomic dysfunction in SIHI, further elucidating the pathophysiological underpinnings of 

this complex brain-heart interaction. 

In the present study, we confirmed, for the first time, the focal capability of IC ischemia 

to generate SIHI; pathologically represented as the chronic manifestation of LA cardiac 

fibrosis. At 28 d following IC injury, we identified remote microgliosis in the corpus callosum, 

ipsilateral internal capsule and ipsilateral VP thalamus. Traditionally, this chronic display of 

remote neuroinflammation has coincided with the secondary neurodegeneration of distal grey 

matter regions 92. While the anticipated neurodegeneration of autonomic forebrain regions was 

not observed in this study, significant microgliosis did occur at the internal capsule; likely 

corresponding with the downstream manifestation of autonomic brainstem damage. 

Supporting this notion, behavioural assessment of PPI displayed notable deficits following left 

IC injury, indirectly demonstrating a possible functional impairment of autonomic activity. 

Physiologically, the chronic presence of secondary neuroinflammation is also known to elicit 

a prolonged, systemic immune response 64. Based upon the recent implication of inflammation 

in myocardial fibrotic remodelling 114,187,188,210,211, we correlated microgliosis to LA cardiac 

fibrosis demonstrating, for the first time, a positive association between neuroinflammation 

and SIHI. Taken together, these downstream observations of IC ischemia further support the 

hypothesized mechanistic role, of both autonomic dysfunction and inflammation, in the 

pathophysiological cascade of SIHI (Figure 25).  
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Figure 25. Schematic summary outlining the proposed pathophysiological cascade of 
stroke-induced heart injury.   
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The neurological influence of ischemic stroke in the generation of SIHI has been 

acknowledged for several years. Yet, despite decades of research, the underlying 

pathophysiology of this intricate brain-heart connection remains unknown. Clinically, it has 

been hypothesized that stroke involving the IC initiates SIHI, since the IC controls autonomic 

regulation of cardiovascular function 2,108,109. However, given the high prevalence of shared 

risk factors between ischemic stroke and cardiovascular disorders, current conclusions from 

clinical studies are largely speculative 105. We therefore sought to establish a novel rodent 

model of focal insular ischemic stroke, vitally expanding current mechanistic knowledge of 

SIHI. 

Prior to this thesis, experimental studies of SIHI have exclusively involved animal 

models of MCAO 55,135. However, use of this technique creates a large infarct region, extending 

beyond the IC 55,56,120. Consequently, the isolated association of IC ischemia with SIHI has yet 

to be confirmed. In the present study, use of ET-1 produced a focal, and much less severe, 

ischemic infarct; limiting primary ischemia to the IC region. Pathologically, this confined 

insular injury corresponded with the structural manifestation of LA cardiac fibrosis, supporting 

the overarching hypothesis of focal IC involvement in SIHI development.   

At 28 d following IC damage, rats subjected to left IC injury displayed an observable 

trend of reduced PPI, demonstrating a potential lateralization of IC autonomic function. 

Experimentally, this behavioural assessment of sensorimotor gating serves as a preliminary 

hallmark of autonomic dysfunction; indirectly supporting the mechanistic association between 

IC damage, autonomic impairment and SIHI. In correspondence with this behavioural 

phenotype, an accompanying pathology of secondary microgliosis was observed in the corpus 

callosum, ipsilateral internal capsule and ipsilateral VP thalamus, 28 d following IC ischemia. 

Traditionally, this chronic display of remote neuroinflammation has coincided with the 

secondary neurodegeneration of distal grey matter regions 92. As such, secondary neuronal loss, 

within remote forebrain regions of IC autonomic circuitry, was expected. Yet, upon 

histological examination, this anticipated chronic display of secondary neurodegeneration was 

not observed. However, significant microgliosis did occur in the ipsilateral internal capsule of 

injured rats; likely corresponding with a downstream manifestation of autonomic brainstem 

damage. Consequently, future analysis of brainstem pathology, as well as the telemetric 
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analysis of HRV, should be performed to directly affirm the mechanistic role of autonomic 

cardiovascular dysfunction in SIHI. 

In addition to autonomic dysfunction, inflammation has been implicated as a cause of 

SIHI, known to induce myocardial fibrotic remodelling 114,187,188,210,211. To further examine this 

potential pathophysiological relationship, we correlated microgliosis of the corpus callosum, 

ipsilateral internal capsule and ipsilateral VP thalamus, to LA cardiac fibrosis. At 28 d 

following IC injury, increased microgliosis consistently associated with the enhanced 

presentation of LA fibrosis; demonstrating a positive correlative relationship between these 

two variables. Presently, it remains unclear whether this ischemic mechanism of inflammation 

is independently capable of eliciting SIHI. Recently, Olshansky hypothesized a regulatory role 

of the ANS in myocardial cytokine production, outlining a parasympathetic role of cardiac 

inflammation attenuation 114. Furthermore, overstimulation of the SNS has been implicated in 

the activation of a systemic, proinflammatory response 238. It is therefore possible that, 

following stroke, ischemic-induced systemic inflammation perturbs cardiac tissue, evoking the 

infiltration of inflammatory cells into the heart. Subsequently, damage to the IC decreases 

parasympathetic tone, hindering the suppression of unwanted inflammation. This, coupled with 

chronic exposure to SNS-induced systemic inflammation, further exacerbates local cardiac 

inflammation; contributing to the observed presence of cardiac fibrosis. As such, SIHI is likely 

the synergistic result of both autonomic dysfunction and inflammation, arising from the clinical 

occurrence of insular ischemic stroke.  

To date, establishment of this insular ischemic stroke model has only just begun to 

scratch the complex, and compelling, mechanistic surface of SIHI. Currently, primary use of 

this novel model has recapitulated the clinical manifestation of SIHI after IC ischemia; creating 

a reliable experimental mold for the future investigation of this intricate disease. Presently, 

post-stroke cardiovascular complications remain a prominent cause of death 105. Yet, aside 

from the management of associated vascular risk factors, a tailored clinical plan for the 

specialized treatment of SIHI does not exist 105. Future use of this model will only enhance 

mechanistic understanding of SIHI, ultimately leading to the vital development of novel 

therapies capable of preventing these adverse cardiovascular outcomes of ischemic stroke. 
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